\qquad

Code No. : 30009 E Sub. Code : GMMA 61/

 GMMC 61B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.
Sixth Semester
Mathematics/Mathematics with C.A. - Main
COMPLEX ANALYSIS

(For those who joined in July 2012 - 2015)
Time : Three hours Maximum : 75 marks

$$
\text { SECTION A }-(10 \times 1=10 \text { marks })
$$

Answer ALL the questions.
Choose the correct answer :

1. $(1-i)^{4}=$
(a) $4 i$
(b) $-4 i$
(c) 4
(d) -4
2. Which of the following is a region?
(a) $\{Z:|Z-2+i| \leq 1\}$
(b) $\{Z:|\operatorname{Im} Z|>1\}$
(c) $\quad\{Z: \operatorname{Re} Z>1\}$
(d) $\{Z:|\operatorname{Im} Z| \geq 1\}$
3. $\lim _{Z \rightarrow 2} \frac{Z^{2}-4}{Z-2}=$
(a) 0
(b) 1
(c) 4
(d) ∞
4. If $f(z)$ and $\overline{f(z)}$ are analytic, then $f(z)=$
(a) 0
(b) constant
(c) $f(\bar{z})$
(d) $\overline{f(z)}$
5. $(i, 0,-1, \infty)=$
(a) $i+1$
(b) $i-1$
(c) $1-i$
(d) i
6. The invariant points of the transformation $W=\frac{1+2}{1-2}$ are
(a) 0,1
(b) $1,-1$
(c) $i,-i$
(d) $0, i$

Page 2 Code No. : 30009E
7. If C is the circle $|z|=2$, then $\int_{C} \frac{\sin z}{\left(z-\frac{\pi}{2}\right)^{2}} d z=$
(a) $2 \pi i$
(b) 4π
(c) $4 \pi i$
(d) 0
8. $1+\frac{z}{1!}+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\ldots=$
(a) $\sin z$
(b) $\cos z$
(c) e^{z}
(d) e^{-z}
9. If $f(z)=\frac{e^{z}}{z^{2}}$, then $\operatorname{Res}\{f(z) ; 0\}=$
(a) 0
(b) -1
(c) 1
(d) ∞
10. The singular points of the function $f(z)=\frac{z-1}{z^{2}-5 z+6}$ are
(a) 1,0
(b) 2,3
(c) $-2,-3$
(d) $-5,6$

Page 3 Code No. : 30009E

SECTION B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Prove : $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right| \mid$.

Or
(b) Prove : $\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg z_{1}-\arg z_{2}$.
12. (a) Verify that whether the function $f(z)=\bar{z}$ is differentiable.

Or
(b) If $u(x, y)=x^{4}-6 x^{2} y^{2}+y^{4}$, find the analytic function $f(z)=u(x, y)+i u(x, y)$.
13. (a) Show that the transformation $W=\frac{5-4 z}{4 z-2}$ maps the unit circle $|z|=1$ into a circle of radius unity and centre $\frac{-1}{2}$.

Or
(b) Find the bilinear transformation which maps the points $-1,1, \infty$ respectively onto $-i,-1, i$.

Page 4 Code No. : 30009E
[P.T.O.]
14. (a) Prove : $\int_{C}^{-2} z^{2} d z=0$ if C is the unit circle $|z|=1$.

Or
(b) Evaluate $\int_{C} \frac{z d z}{z^{2}-1}$ where C is the positively oriented circle $|z|=2$.
15. (a) Expand $\frac{-1}{(z-1)(z-2)}$ as a power series in z in the region $1<|z|<2$.

Or

(b) Evaluate $: \int_{C} \frac{3 z^{2}+z-1}{\left(z^{2}-1\right)(z-3)} d z$ where C is the circle $|z|=2$.

SECTION C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Prove that z_{1} and z_{2} are inverse points with respect to a circle $z \bar{z}+\bar{\alpha} z+\alpha \bar{z}+\beta=0$ if and only if $z_{1} \overline{z_{2}}+\bar{\alpha} z_{1}+\alpha \overline{z_{2}}+\beta=0$.
Or
(b) Find the point $Q=\left(x_{1}, x_{2}, x_{3}\right)$ on the sphere S that represents the complex number $z=x+i y$.

Page 5 Code No. : 30009E
17. (a) Derive the Cauchy-Riemann equations in polar coordinates.

Or
(b) Find the analytic function $f(z)=u+i v$ if $u+v=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$.
18. (a) Find the image of the circle $|z-3 i|=3$ under the map $W=\frac{1}{z}$.
Or
(b) Prove that a bilinear transformation $W=\frac{a z+b}{c z+d}$ where $a d-b c \neq 0$ maps the real axis into itself if and only if a, b, c, d are real.
19. (a) State and prove Cauchy's theorem.

Or

(b) Expand $z e^{2 z}$ in a Taylor's series about $z=-1$ and determine the region of convergence.
20. (a) State and prove Laurent's theorem.

Or
(b) Evaluate : $\int_{0}^{2 \pi} \frac{d \theta}{13+5 \sin \theta}$.

Reg. No. :

\qquad

Code No. : 30010 B Sub. Code : GMMA 62/

 GMMC 62B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics/Mathematics with CA - Core
LINEAR PROGRAMMING

(For those who joined in July 2012-2015)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL the questions.
Choose the correct answer :

1. சிம்ப்ளக்ஸ் அட்டவணணயில் கிடைக்கும் தமலமை உறுப்பு -
(அ) சுழலியக்க உறுப்பு
(ஆ) மீசீசிறும உறுப்பு
(இ) வரம்புள்ள உறுப்பு
(ஈ) வரம்பில்லா உறுப்பு

The leading element obtained in simple table is also called \qquad element.
(a) pivotal
(b) minimum
(c) bounded
(d) unbounded
2. ஒரு நோியல் திட்டக் கணக்கின் தீர்வுகளின் கணம்
(அ) மூடிய கணம்
(ஆ) திறந்த கணம்
(இ) குவிகணம்
(ஈ) ஏதுமில்லை
The set of all feasible solution to a LPP is a
(a) closed set
(b) open set
(c) convex set
(d) none
3. கீழ்கண்டவற்றுள் எது செயற்கை மாறி நுட்பம் ஆகும்?
(அ) வரைபட முறை
(ஆ) சிம்ப்ளக்ஸ் முறை
(இ) வோகல் முறை
(ஈ) பொிய M முறை
Page 2 Code No. : 30010 B

Which one of the following is an artificial technique?
(a) Graphical method
(b) Simplex method
(c) Vogel's method
(d) Big method
4. முதன்மை இருமை ஜோடியை அமைக்கும் போது இரும கட்டுப்பாடுகளின் எண்ணிக்கை ——க்ு சமமாக இருக்கும்.
(அ) முதன்மை கட்டுப்பாடுகளின் எண்ணிக்கை
(ஆ) இரும மாறிகளின் எண்ணிக்கை
(இ) முதன்மை மாறிகளின் எண்ணிக்ணை
(ஈ) இவை ஏதுமில்லை
In the formulation of primal dual pair, the number of dual constraints is always equal to \qquad
(a) number of primal constraints
(b) number of dual variables
(c) number of primal variables
(d) none of these
5. மீசீசிற செலவு முறறயின் மறுபெயா் ——.
(அ) அணி-சிறு மதிப்பு முறை
(ஆ) பத்தி-சிறு மதிப்பு முறை
(இ) நிரல்-சிறு மதிப்பு முறை
(ஈ) வடமேற்கு மூலல முறை
Page 3 Code No. : 30010 B

The other name for the least cost method is
\qquad
(a) matrix-minima method
(b) column- minima method
(c) row- minima method
(d) north west corner rule
6. ஒரு போக்குவாத்துக் கணக்கில் —— சார்பற்ற சமன்பாடுகள் உள்ளன.
(அ) $m n-1$
(ஆ) $m+n-1$
(இ) $m+n$
(ஈ) $m n$

The number of linearly independent equations in a transportation problem is
(a) $m n-1$
(b) $m+n-1$
(c) $m+n$
(d) $m n$
7. ஒது்கீட்டுக்க் கணக்றை தீர்வு கானும் முறை ——.
(அ) சார்ன்ஸ்
(ஆ) டான்சிக்
(இ) கோனிக்
(ஈ) வோகல்
The method of solving an assignment problem is - method.
(a) Charnes
(b) Dantzig
(c) Konig
(d) Vogel

Page 4 Code No. : 30010 B
8. ஒரு ஒதுக்கீட்டுக் கணக்கின் உத்தம அட்டவணை
—— - $்$ நிறதத்தப்படிம்.
(அ) $p>n$
(ஆ) $n>p$
(இ) $p \neq n$
(ஈ) $\quad p=n$
An optimum assignment table stop when
(a) $p>n$
(b) $n>p$
(c) $p \neq n$
(d) $p=n$
9. ஒரு இயந்திரம் வேலை செய்யாமல் இருக்கும் நேரத்திற்கு —— நேரம் என்று பெயர்.
(அ) முழு நேரம்(ஆ) செயல்படும் நேரம்
(இ) ஐடில் நேரம்
(ஈ) ஏதுமில்லை
The time for which the machine has no job to process is \qquad on machine.
(a) total time
(b) processing time
(c) idle time
(d) none
10. \qquad நேரத்றை ஒரு வேலை முழுவணதயும் முடிக்க பயன்படுத்தும் நேரம் எனப்படுகிறது.
(அ) செயல்படும்
(ஆ) முடிவடையும்
(இ) ஐடில்
(ஈ) மொத்த
—— time is a time for a job to flow through the system.
(a) processing
(b) completion
(c) idle
(d) total

Page 5 Code No. : 30010 B

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) பின்வரும் ஓருபடி திட்டக் கணக்கின் திட்ட வடிவம் எழுதுக.

மீச்சிறிதாக்கு $z=2 x_{1}+5 x_{2}+x_{3}$
கட்டுப்பாடுகள்
$x_{1}+3 x_{2}-4 x_{3} \leq 20$
$2 x_{1}+x_{2}+x_{3} \geq 10$
$x_{1}+4 x_{2}+5 x_{3}=10$
$x_{1}, x_{2}, x_{3} \geq 0$
Write the following LPP in standard form
Minimize $z=2 x_{1}+5 x_{2}+x_{3}$

Subject to

$$
\begin{aligned}
& x_{1}+3 x_{2}-4 x_{3} \leq 20 \\
& 2 x_{1}+x_{2}+x_{3} \geq 10 \\
& x_{1}+4 x_{2}+5 x_{3}=10 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Or

Page 6 Code No. : 30010 B
(ஆ) வரைபட முறையை பயன்படுத்தி கீழ்கண்ட கணக்கை
தீர்க்க :
மீப்பொிதாக்கு $z=20 x_{1}+30 x_{2}$
கட்டுப்பாடுகள்
$3 x_{1}+3 x_{2} \leq 36$
$5 x_{1}+2 x_{2} \leq 50$
$2 x_{1}+6 x_{2} \leq 60$
$x_{1}, x_{2} \geq 0$.

Solve the following LPP graphically

Maximize $z=20 x_{1}+30 x_{2}$

Subject to
$3 x_{1}+3 x_{2} \leq 36$
$5 x_{1}+2 x_{2} \leq 50$
$2 x_{1}+6 x_{2} \leq 60$
$x_{1}, x_{2} \geq 0$.
12. (அ) இரு பகுதி சிம்ப்ளக்ஸ் முறையை விவாி.

Explain the two phase simplex method.

Or

Page 7 Code No. : 30010 B
(ஆ) கீழ்காணும் நேரிய கணக்கை இரட்மடத் தன்மை கணக்காக எழுது.

மீப்பெரிதாக்கு $z=x_{1}+2 x_{2}+3 x_{3}$
கட்டுப்பாடுகள்
$4 x_{1}+5 x_{2}+4 x_{3} \leq 9$
$6 x_{1}-x_{2}+5 x_{3}=10$
$x_{1}, x_{2}, x_{3} \geq 0$.
Write the dual of the following LPP
Maximize $z=x_{1}+2 x_{2}+3 x_{3}$
Subject to
$4 x_{1}+5 x_{2}+4 x_{3} \leq 9$
$6 x_{1}-x_{2}+5 x_{3}=10$
$x_{1}, x_{2}, x_{3} \geq 0$.
13. (அ) கீழ்கண்ட போக்குவரத்துக் கணக்கிற்கான அடிப்படை சாத்திய தீர்விのை மீச்சிற செலவு முறறப்படி காண்க.

	W_{1}	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$	a_{i}
F_{1}	8	10	12	900
$\mathrm{~F}_{2}$	12	13	12	1000
$\mathrm{~F}_{3}$	14	10	11	1200
$\mathrm{~b}_{\mathrm{j}}$	1200	1000	900	3100
தேவை				

Page 8 Code No. : 30010 B

Find the initial basic feasible solution by least cost method to the following transportation problem.

	W_{1}	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$	a_{i}
F_{1}	8	10	12	900
$\mathrm{~F}_{2}$	12	13	12	1000
$\mathrm{~F}_{3}$	14	10	11	1200
$\mathrm{~b}_{j}$	1200	1000	900	3100
Supply				
Demand				

Or

(ஆ) கீழ்கண்ட போக்குவாத்துக் கணக்கிற்கான அடிப்படை சாத்திய தீர்வினை வடமேற்கு மூலல முறறப்படி காண்க.

Find the initial basic feasible solution by North West corner method to the following transportation problem.

	W_{1}	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$	a_{i}
F_{1}	2	7	4	5
$\mathrm{~F}_{2}$	3	3	1	8
$\mathrm{~F}_{3}$	5	4	7	7
$\mathrm{~F}_{4}$	1	6	2	14
$\mathrm{~b}_{\mathrm{j}}$	2	9	18	$34 / 29$

Page 9 Code No. : 30010 B
14. (அ) ஒரு மதிப்பு அணியில் எந்த ஒரு நிறரகளில் அல்லது நிரல்களில் ஒரு மாறிலியை தூட்டவோ அல்லது கழிக்தவோ, செப்தாலும் ஒதுக்கீட்டுக் கணக்கு முறையில் உத்தம தீர்வாளது மாறாததாக இருக்கும் என்பதை நிறுவுக.

Prove that the optimal solution to the assignment problems remains the same if a constant is added or subtracted to any row or column of cost matrix.

Or
(ஆ) ஓதுக்கீட்டுக் கணக்கை தீர்ப்பதற்கான செயல் வழிமுறறகளை எழுதுக.

Write the algorithm for solving assignment problem.
15. (அ) உச்ச தொடா் கணக்கையும், 5 வேヤைகளின் மீச்சிறு மொத்த கடந்த நேரத்றையும், இரண்டு இயந்திரங்களின் ஓய்வு நேரத்றதயும் கண்டு|பிடி வேலை: $\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$ எந்திரம் $\begin{array}{llllll}\mathrm{M}_{1} & 3 & 8 & 5 & 7 & 4\end{array}$ எந்திரம் $\mathrm{M}_{2} \quad 4 \quad 10$

Page 10 Code No. : 30010 B

Determine the optimum sequence for the 5 jobs and minimum total elapsed time and idle time of two machines.

Job :	1	2	3	4	5
Machine M_{1}	3	8	5	7	4
Machine M_{2}	4	10	6	5	8

Or
(ஆ) n வேலைக๓ள m எந்திரங்களூடன் செய்து முடிக்கப்படும் முறறயிினை விவாி.

Describe the method of processing n jobs through m machines.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) கீழ்காறும் நோியல் திட்டக் கணக்கை சிம்ப்ளக்ஸ் முறைப்பட தீர்க்க

மீப்பபரிதாக்கு $z=25 x_{1}+20 x_{2}$
கட்டுப்பாடுகள்
$16 x_{1}+12 x_{2} \leq 100$
$8 x_{1}+16 x_{2} \leq 80$
$x_{1}, x_{2} \geq 0$.
Page 11 Code No. : 30010 B

Using simplex method to solve the following LPP

Maximize $z=25 x_{1}+20 x_{2}$

Subject to

$$
\begin{aligned}
& 16 x_{1}+12 x_{2} \leq 100 \\
& 8 x_{1}+16 x_{2} \leq 80 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Or
(ஆ) கீழ்க்காணும் நோியல் திட்டக் கணக்கை சிம்ப்ளக்ஸ் முறைப்படி தீர்க்க.

மீச்சிறிதாக்கு $z=x_{1}-3 x_{2}+2 x_{3}$

கட்டுப்பாடுகள்
$3 x_{1}-x_{2}+2 x_{3} \leq 7$
$-2 x_{1}+4 x_{2} \leq 12$
$-4 x_{1}+3 x_{2}+8 x_{3} \leq 10$
$x_{1}, x_{2}, x_{3} \geq 0$

Page 12 Code No. : 30010 B

Use simplex method to solve the following LPP.

Minimize $z=x_{1}-3 x_{2}+2 x_{3}$

Subject to

$$
\begin{aligned}
& 3 x_{1}-x_{2}+2 x_{3} \leq 7 \\
& -2 x_{1}+4 x_{2} \leq 12 \\
& -4 x_{1}+3 x_{2}+8 x_{3} \leq 10 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

17. (அ) கீழ்காறும் நேரியல் திட்ட கணக்ணை பெரிய M முறைப்படி தீர்க்க.

மீப்பொிதாக்கு $z=4 x_{1}+x_{2}$

கட்டுப்பாடுகள்
$3 x_{1}+x_{2}=3$
$4 x_{1}+3 x_{2} \geq 6$
$x_{1}+2 x_{2} \leq 4$
$x_{1}, x_{2} \geq 0$
Page 13 Code No. : 30010 B

Use Big M method to solve the following LPP
Maximize $z=4 x_{1}+x_{2}$
Subject to
$3 x_{1}+x_{2}=3$
$4 x_{1}+3 x_{2} \geq 6$
$x_{1}+2 x_{2} \leq 4$
$x_{1}, x_{2} \geq 0$
Or
(ஆ) கீழ்கண்ட முதன்மை நோியல் செயல் திட்டக் கணக்கினை அதனில் இருமை நோியல் செயல் திட்டக் கணக்கினைக் கண்டுபிடித்து தீர்க்கவும்.

மீச்சிறிதாக்கு $z=2 x_{1}+3 x_{2}$
கட்டுப்பாடுகள்
$x_{1}+x_{2} \geq 5$
$x_{1}+2 x_{2} \geq 6$
$x_{1}, x_{2} \geq 0$
Solve by simplex method using dual of the following LPP:
Minimize $z=2 x_{1}+3 x_{2}$
Subject to

$$
\begin{aligned}
& x_{1}+x_{2} \geq 5 \\
& x_{1}+2 x_{2} \geq 6 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Page 14 Code No. : 30010 B
18. (அ) கீழ்கண்ட போக்குவரத்து கணக்கினை தீர்க்க

	D_{1}	D_{2}	D_{3}	D_{4}	a_{i}
S_{1}	3	1	7	4	300
$\mathrm{~S}_{2}$	2	6	5	9	400
$\mathrm{~S}_{3}$	8	3	3	2	500
$\mathrm{~b}_{j}$	250	350	400	200	1200

Solve the following transportation problem.

	D_{1}	D_{2}	D_{3}	D_{4}	a_{i}
S_{1}	3	1	7	4	300
$\mathrm{~S}_{2}$	2	6	5	9	400
$\mathrm{~S}_{3}$	8	3	3	2	500
$\mathrm{~b}_{j}$	250	350	400	200	1200

Or
(ஆ) கீழ்கண்ட போக்குவரத்துக் கணக்கை தீர்க்க.

	F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	a_{i}
W_{1}	10	15	12	12	200
$\mathrm{~W}_{2}$	8	10	11	9	150
$\mathrm{~W}_{3}$	11	12	13	10	120
$\mathrm{~b}_{j}$	140	120	80	220	$560 / 470$

Page 15 Code No. : 30010 B

Solve the following transportation problem.

	F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	ai
W_{1}	10	15	12	12	200
$\mathrm{~W}_{2}$	8	10	11	9	150
$\mathrm{~W}_{3}$	11	12	13	10	120
$\mathrm{~b}_{j}$	140	120	80	220	$560 / 470$

19. (அ) கீழ்கண்ட ஒதுக்கீட்டுக் கணக்கை தீர்க்க.

	A	B	C	D
X	18	24	28	32
Y	8	13	17	19
Z	10	15	19	22

Solve the following assignment problem.

	A	B	C	D		
X	18	24	28	32		
Y	8	13	17	19		
Z	10	15	19	22		
	Or					

Page 16 Code No. : 30010 B
(ஆ) பினவரும் ஒதுக்கீட்டுக் கணக்கின் அதிகப்படியான
இலாபத்தை கணக்கிடுக.
$\begin{array}{llll}\mathrm{A}_{1} & \mathrm{~A}_{2} & \mathrm{~A}_{3} & \mathrm{~A}_{4}\end{array}$

J_{1}	62	71	87	48

J_{2}	78	84	92	64

$\begin{array}{lllll}\mathrm{J}_{3} & 50 & 61 & 111 & 87\end{array}$
$\begin{array}{lllll}\mathrm{J}_{4} & 101 & 73 & 71 & 77\end{array}$
$\begin{array}{lllll}\mathrm{J}_{5} & 82 & 59 & 81 & 80\end{array}$
Solve the following assignment problem, find the maximum profit.

	A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$
$\mathrm{~J}_{1}$	62	71	87	48
$\mathrm{~J}_{2}$	78	84	92	64
$\mathrm{~J}_{3}$	50	61	111	87
$\mathrm{~J}_{4}$	101	73	71	77
$\mathrm{~J}_{5}$	82	59	81	80

20. (அ) கீழ்க்காணும் போக்குவரத்து கணக்கினைத் தீர்க்க.

எந்திரங்கள் $\quad \mathrm{M}_{1} \quad \mathrm{M}_{2} \quad \mathrm{M}_{3} \quad \mathrm{M}_{4}$
$\begin{array}{llllll}\text { வேலைகள் } & \mathrm{J}_{1} & 15 & 5 & 5 & 15\end{array}$
$\begin{array}{lllll}\mathrm{J}_{2} & 12 & 2 & 10 & 12\end{array}$
$\begin{array}{lllll}\mathrm{J}_{3} & 16 & 2 & 4 & 16\end{array}$
$\begin{array}{lllll}\mathrm{J}_{4} & 18 & 3 & 4 & 18\end{array}$
Page 17 Code No. : 30010 B

Solve the following transportation problem.

Machines		M_{1}	M_{2}	M_{3}	M_{4}
Jobs	J_{1}	15	5	5	15
	$\mathrm{~J}_{2}$	12	2	10	12
	$\mathrm{~J}_{3}$	16	2	4	16
	$\mathrm{~J}_{4}$	18	3	4	18

Or
(ஆ) கீழ்காணும் போக்குவரத்து கணக்கிறைத் கீர்க்க.
வேலை 1 வாிசை நேரம் A B C D
$\begin{array}{llll}4 & 6 & 7 & 3\end{array}$
வேலை 2 வாிசை நேரம் $\mathrm{D} \quad \mathrm{B} \quad \mathrm{A} \quad \mathrm{C}$
$\begin{array}{llll}8 & 7 & 4 & 5\end{array}$
Solve the following transportation problem.
Job 1 Time sequence A B C D
$\begin{array}{llll}4 & 6 & 7 & 3\end{array}$
Job 2 Time sequence D B $\quad \mathrm{A} \quad \mathrm{C}$
$\begin{array}{llll}8 & 7 & 4 & 5\end{array}$

Page 18 Code No. : 30010 B

Reg. No. :

Code No. : 30010 E Sub. Code : GMMA 62/

 GMMC 62B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics/Mathematics with CA - Core
LINEAR PROGRAMMING

(For those who joined in July 2012-2015)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL the questions.
Choose the correct answer :

1. The leading element obtained in simple table is also called \qquad element
(a) pivotal
(b) minimum
(c) bounded
(d) unbounded
2. The set of all feasible solution to a LPP is a
(a) closed set
(b) open set
(c) convex set
(d) none
3. Which one of the following is an artificial technique?
(a) Graphical method
(b) Simplex method
(c) Vogel's method
(d) Big method
4. In the formulation of primal dual pair, the number of dual constraints is always equal to
(a) number of primal constraints
(b) number of dual variables
(c) number of primal variables
(d) none of these
5. The other name for the least cost method is
\qquad
(a) matrix-minima method
(b) column- minima method
(c) row- minima method
(d) north west corner rule

Page 2 Code No. : 30010 E
6. The number of linearly independent equations in a transportation problem is \qquad
(a) $m n-1$
(b) $m+n-1$
(c) $m+n$
(d) $m n$
7. The method of solving an assignment problem is — method
(a) Charnes
(b) Dantzig
(c) Konig
(d) Vogel
8. An optimum assignment table stop when -__
(a) $p>n$
(b) $n>p$
(c) $p \neq n$
(d) $p=n$
9. The time for which the machine has no job to process is \qquad on machine
(a) total time
(b) processing time
(c) idle time
(d) none
10. time is a time for a job to flow through the system
(a) processing
(b) completion
(c) idle
(d) total

Page 3 Code No. : 30010 E

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Write the following LPP in standard form

Minimize $z=2 x_{1}+5 x_{2}+x_{3}$

Subject to
$x_{1}+3 x_{2}-4 x_{3} \leq 20$
$2 x_{1}+x_{2}+x_{3} \geq 10$
$x_{1}+4 x_{2}+5 x_{3}=10$
$x_{1}, x_{2}, x_{3} \geq 0$
Or
(b) Solve the following LPP graphically

Minimize $z=20 x_{1}+30 x_{2}$

Subject to
$3 x_{1}+3 x_{2} \leq 36$
$5 x_{1}+2 x_{2} \leq 50$
$2 x_{1}+6 x_{2} \leq 60$
$x_{1}, x_{2} \geq 0$.

Page 4 Code No. : 30010 E
12. (a) Explain the two phase simplex method.

Or
(b) Write the dual of the following LPP

Maximize $z=x_{1}+2 x_{2}+3 x_{3}$
Subject to
$4 x_{1}+5 x_{2}+4 x_{3} \leq 9$
$6 x_{1}-x_{2}+5 x_{3}=10$
$x_{1}, x_{2}, x_{3} \geq 0$.
13. (a) Find the initial basic feasible solution by least cost method to the following transportation problem.

	W_{1}	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$	a_{i}	
F_{1}	8	10	12	900	
$\mathrm{~F}_{2}$	12	13	12	1000	
$\mathrm{~F}_{3}$	14	10	11	1200	Supply
b_{j}	1200	1000	900	3100	
	Demand				

Or

Page 5 Code No. : 30010 E
(b) Find the initial basic feasible solution by North West corner method to the following transportation problem.

	W_{1}	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$	a_{i}
F_{1}	2	7	4	5
$\mathrm{~F}_{2}$	3	3	1	8
$\mathrm{~F}_{3}$	5	4	7	7
$\mathrm{~F}_{4}$	1	6	2	14
$\mathrm{~b}_{\mathrm{j}}$	2	9	18	$34 / 29$

14. (a) Prove that the optimal solution to the assignment problems remains the same if a constant is added or subtracted to any row or column of cost matrix.

Or
(b) Write the algorithm for solving assignment problem.
15. (a) Determine the optimum sequence for the 5 jobs and minimum total elapsed time and idle time of two machines.

Job :	1	2	3	4	5
Machine $^{\mathrm{M}_{1}}$	3	8	5	7	4
Machine $^{\mathrm{M}_{2}}$	4	10	6	5	8
	Or				

(b) Describe the method of processing n jobs through m machines.

Page 6 Code No. : 30010 E

PART C - (5 $\times 8=40$ marks $)$

Answer ALL questions, choosing either (a) or (b).
16. (a) Using simplex method to solve the following LPP

Maximize $z=25 x_{1}+20 x_{2}$
Subject to
$16 x_{1}+12 x_{2} \leq 100$
$8 x_{1}+16 x_{2} \leq 80$
$x_{1}, x_{2} \geq 0$.

Or
(b) Use simplex method to solve the following LPP.

Minimize $z=x_{1}-3 x_{2}+2 x_{3}$
Subject to
$3 x_{1}-x_{2}+3 x_{3} \leq 7$
$-2 x_{1}+4 x_{2} \leq 12$
$-4 x_{1}+3 x_{2}+8 x_{3} \leq 10$
$x_{1}, x_{2}, x_{3} \geq 0$

Page 7 Code No. : 30010 E
17. (a) Use Big M method to solve the following LPP

Maximize $z=4 x_{1}+x_{2}$
Subject to
$3 x_{1}+x_{2}=3$
$4 x_{1}+3 x_{2} \geq 6$
$x_{1}+2 x_{2} \leq 4$
$x_{1}, x_{2} \geq 0$
Or
(b) Solve by simplex method using dual of the following LPP:

Minimize $z=2 x_{1}+3 x_{2}$
Subject to
$x_{1}+x_{2} \geq 5$
$x_{1}+2 x_{2} \geq 6$
$x_{1}, x_{2} \geq 0$
18. (a) Solve the following transportation problem.

	D_{1}	D_{2}	D_{3}	D_{4}	a_{i}
S_{1}	3	1	7	4	300
$\mathrm{~S}_{2}$	2	6	5	9	100
$\mathrm{~S}_{3}$	8	3	3	2	500
$\mathrm{~b}_{j}$	250	350	400	200	1200

Or
Page 8 Code No. : 30010 E
(b) Solve the following transportation problem.

	F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	a_{i}
W_{1}	10	15	12	12	200
$\mathrm{~W}_{2}$	8	10	11	9	150
$\mathrm{~W}_{3}$	11	12	13	10	120
$\mathrm{~b}_{\mathrm{j}}$	140	120	80	220	$560 / 470$

19. (a) Solve the following assignment problem.

	A	B	C	D
X	18	24	28	32
Y	8	13	17	19
Z	10	15	19	22

Or
(b) Solve the following assignment problem, find the maximum profit.

	A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$
$\mathrm{~J}_{1}$	62	71	87	48
$\mathrm{~J}_{2}$	78	84	92	64
$\mathrm{~J}_{3}$	50	61	111	87
$\mathrm{~J}_{4}$	101	73	71	77
$\mathrm{~J}_{5}$	82	59	81	80

Page 9 Code No. : 30010 E
20. (a) Solve the following transportation problem.

Machines		M_{1}	M_{2}	M_{3}	M_{4}					
Jobs	J_{1}	15	5	5	15					
	$\mathrm{~J}_{2}$	12	2	10	12					
	$\mathrm{~J}_{3}$	16	2	4	16					
	$\mathrm{~J}_{4}$	18	3	4	18					
							Or			

(b) Solve the following transportation problem.

Job 1 Time sequence A B C D
$\begin{array}{llll}4 & 6 & 7 & 3\end{array}$
Job 2 Time sequence \quad D \quad B \quad A \quad C
$\begin{array}{llll}8 & 7 & 4 & 5\end{array}$

Page 10 Code No. : 30010 E

Reg. No.:

Code No. : 30011 E Sub. Code : GMMA 63 /

 GMMC 63B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics/Mathematics with CA — Main
MECHANICS

(For those who joined in July 2012-2015 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer

1. If the resultant of two forces acting at a point is greatest, then the angle between them is
(a) 180°
(b) 90°
(c) 0°
(d) 45°
2. If, P, Q are two forces then the least resultant is
(a) $P+Q$
(b) $P-Q$
(c) P / Q
(d) Q / P
3. If three coplanar forces acting on a regid body keep it is equilibrium then they must be
(a) 0
(b) Perpendicular
(c) Either concurrent or parallel
(d) Parallel
4. If three forces acting at a point are in equilibrium then each force is proportional to the of the angle between the other two
(a) Cosine
(b) Sine
(c) Tan
(d) Sec
5. The horizontal velocity of a projectile is
(a) $u \sin \alpha$
(b) $u \cos \alpha$
(c) $u \tan \alpha$
(d) $2 u \sin \alpha$

Page 2 Code No. : 30011 E
6. The time of flight of a particle is
(a) $\frac{2 u \sin \alpha}{g}$
(b) $\frac{2 u \cos \alpha}{g}$
(c) $\frac{u \sin \alpha}{2 g}$
(d) $\frac{\sin \alpha}{2 g}$
7. The period of a simple harmonic motion is
(a) $\sqrt{\frac{2 \pi}{\mu}}$
(b) $\frac{\pi \sqrt{2}}{\mu}$
(c) $\frac{\sqrt{2 \pi}}{\mu}$
(d) $\frac{2 \pi}{\sqrt{\mu}}$
8. In a simple harmonic motion the frequency of oscillation is \qquad
(a) $\frac{\pi}{\sqrt{\mu}}$
(b) $\frac{2 \pi}{\sqrt{\mu}}$
(c) $\frac{\sqrt{\mu}}{2 \pi}$
(d) $\frac{\sqrt{\pi}}{\mu}$
9. The $(p-r)$ equation of a parabola is
(a) $p^{2}=a r$
(b) $p^{2}=a r^{3}$
(c) $p=a r$
(d) $p=a r^{2}$

Page 3 Code No. : 30011 E
10. Radial velocity $=$
(a) \dot{r}
(b) \ddot{r}
(c) $r \dot{\theta}$
(d) $-r \dot{\theta}$

PART B - $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) State and prove the triangle law of forces.

Or
(b) If three parallel forces are in equilibrium, then show that each is proportional to the distance between other two.
12. (a) If three coplanar forces acting on a rigid body keep it in equilibrium, then prove that they must be concurrent or parallel.

Or

(b) State and prove just Trigonometrical theorem.
13. (a) If the greatest height attained by the particle is a quarter of its range of the horizontal plane through the point of projection, then find the angle of projection.

Or

Page 4 Code No. : 30011 E
[P.T.O.]
(b) If h and h^{\prime} are the greatest heights in the two paths of a projectile with a given velocity for a given range R, then prove that $R=4 \sqrt{h h^{\prime}}$.
14. (a) A particle moving with simple Harmonic motion and while making on oscillation from one extreme position to the other, its distance from the centre of oscillation at 3 consecutive seconds are x_{1}, x_{2}, x_{3}. Prove that the period of oscillation is $\frac{2 \pi}{\cos ^{-1}\left(\frac{x_{1}+x_{3}}{2 x_{2}}\right)}$.

Or
(b) A particle executing a simple harmonic equation has velocities v_{1}, and v_{2} when its distance from mean position are d_{1} and d_{2} respectively. Find the amplitude, period of velocity when its distance form the mean position is $\frac{d_{1}+d_{2}}{2}$
15. (a) If a point moves so that its radial velocity is k times its transverse velocity, then show that its path is an equiangular spiral.

Or
(b) Derive the $p-r$ equation of a central orbit

Page 5 Code No. : 30011 E

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b)
16. (a) State and prove Lami's theorem.

Or

(b) State and prove Varignon's theorem.
17. (a) A uniform rod of length a, hands against a smooth vertical wall being supported by means of a string, of lengths l, tied to one end of the rod, the other end of the string being attached to a point in the wall. Show that the rod can inclined to the wall at an angle θ given by $\cos ^{2} \theta=\frac{\left(l^{2}-a^{2}\right)}{3 a^{2}}$.

Or
(b) A rod of length $(a+b)$ whose centre of gravity divides it in the ratio a : b is at rest with its ends in contact with a smooth vertical wall and a smooth inclined plane inclined with the wall at an angle if the rod is inclined at an angle θ with the vertical, then show that $\tan \alpha \tan \theta=\frac{a+b}{a}$ or $\frac{a+b}{b}$.
18. (a) Show that the greatest height which a particle with initial velocity v can reach on a vertical wall out a distance a from the point of projection is $\frac{v^{2}}{2 g}-\frac{g a^{2}}{2 v^{2}}$. Also prove that particle in its flight is $\frac{v^{6}}{2 g\left(v^{4}+g^{2} a^{2}\right)}$

Or
(b) Show that for a given velocity of projection the maximum range down an inclined plane of inclination α hears to the maximum range up the inclined plane the ratio $\frac{1+\sin \alpha}{1-\sin \alpha}$.
19. (a) Obtain the differential equation of simple Harmonic equation and solve it completely.

Or
(b) Find the composition of two simple harmonic motions of the same period in the same straight line and the composition of two simple harmonic motions of the same period in two perpendicular directions.
20. (a) Find the law of force towards the pole under which the curve $u^{n}=a^{n} \cos \theta$ can be described.

Or

(b) Obtain the differential equation of the central orbit in the form $\frac{d^{2} u}{d \theta^{2}}+u=\frac{p}{h^{2} u^{2}}$.

Reg. No. : \qquad

Code No. : 30012 E Sub. Code : GMMA 64/ GMMC 64

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics/Mathematics with CA - Main

GRAPH THEORY

(For those who joined in July 2012 - 2015)
Time : Three hours
Maximum : 75 marks

$$
\text { PART A }-(10 \times 1=10 \text { marks })
$$

Answer ALL questions.
Choose the correct answer :

1. In any (p, q) graph $\sum d\left(v_{i}\right)=$ \qquad
(a) $2 p$
(b) $2 q$
(c) q
(d) p
2. The complete graph with p points is denoted by
(a) $K_{p, p}$
(b) K_{p}
(c) $K_{p^{2}}$
(d) $K_{p, n}$
3. The length of the cycle C_{4} is \longrightarrow.
(a) 2
(b) 3
(c) 4
(d) 1
4. The partition $P=(6,6,5,4,3,3,1)$ is
(a) not graphic
(b) graphic
(c) not partition
(d) none
5. Every tree is a
(a) bipartite graph
(b) cyclic graph
(c) acyclic graph
(d) not connected graph
6. $\quad A(p, q)$ graph G is a Tree if
(a) $p=q-1$
(b) $q=p+1$
(c) $p=q+1$
(d) $q=p+2$
7. $K_{3,3}$ is \qquad
(a) planar graph
(b) non-planar graph
(c) cyclic
(d) path
8. The chromatic number of a tree is \qquad
(a) 6
(b) 4
(c) 2
(d) 1

Page 2 Code No. : 30012 E
9. The coefficient of λ^{p-1} in $f(G, \lambda)$ is
(a) q
(b) $-q$
(c) p
(d) $-p$
10. The constant term is $f(G, \lambda)$ is
(a) 1
(b) 2
(c) 3
(d) 0

PART B - $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) If G is a K-regular bigraph with bipartition $\left(V_{1}, V_{2}\right)$ and $K>0$, then prove that $\left|V_{1}\right|=\left|V_{2}\right|$.

Or
(b) Prove that $r(m, n)=r(n, m)$.
12. (a) Prove that a graph G with P points and $\delta=\frac{p-1}{2}$ is connected.

Or
(b) Prove that if G is a K-connected graph then $q \geq \frac{p k}{2}$.

Page 3 Code No. : 30012 E
13. (a) If G is a graph in which the degree of every vertex is atleast two then prove that G contains a cycle.

Or
(b) Prove that every Hamiltonian graph is 2-connected.
14. (a) If G is a plane connected (p, q) graph without triangles and $p \geq 3$ then prove that $q \leq 2 p-4$.

Or

(b) If a $\left(p_{1}, q_{1}\right)$ graph and a $\left(p_{1}, q_{2}\right)$ graph are homeomorphic, then prove that $p_{1}+q_{2}=p_{2}+q_{1}$.
15. (a) Prove that if G is a tree with n points $(n \geq 2)$ then $f(G, \lambda)=\lambda(\lambda-1)^{n-1}$.

Or
(b) Show that $\lambda^{4}-3 \lambda^{3}+3 \lambda^{2}$ cannot be the chromatic polynomial of any graph.

Page 4 Code No. : 30012 E
[P.T.O.]

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) Prove that the maximum number of lines among all p-point graphs with no triangles is $\left[\frac{p^{2}}{4}\right]$.
Or
(b) (i) Define α^{\prime} and β^{\prime}
(ii) Prove that $\alpha^{\prime}+\beta^{\prime}=p$.
17. (a) Prove that a graph G with atleast two points is bipartite iff all its cycles are of even length.

Or
(b) Prove that in any graph $G, K \leq \lambda \leq \delta$.
18. (a) State and prove Dirac theorem.

Or

(b) Prove that $C(G)$ is well defined.
19. (a) State and prove Euler theorem.

Or
(b) Show that $\psi^{\prime}\left(K_{n}\right)= \begin{cases}n & \text { if } n \text { is odd } \\ n-1 & \text { if } n \text { is even }\end{cases}$

Page 5 Code No. : 30012 E
20. (a) State and prove Five colour theorem.

Or
(b) Prove that coefficients of $f(G, \lambda)$ is alternate in sign.

Page 6 Code No. : 30012 E
(8 pages)
Reg. No. : \qquad

Code No. : 30339 E Sub. Code : JMMA 61

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics - Main

LINEAR ALGEBRA

(For those who joined in July 2016 only)
Time : Three hours
Maximum : 75 marks

$$
\text { PART A }-(10 \times 1=10 \text { marks })
$$

Answer ALL questions.
Choose the correct answer :

1. Under which scalar multiplication defined below, $R \times R$ is not a vector space over R ?
(a) $\alpha(x, y)=\left(\alpha x, \alpha^{2} y\right)$
(b) $\alpha(a, b)=(0,0)$
(c) $\alpha(a, b)=(\alpha a, 0)$
(d) All the above
2. The union of two subspaces A and B is a vector space if
(a) $A \cap B=\{ \}$
(b) $B \subset A^{\prime}$
(c) $A \subseteq B$ or $B \subseteq A$
(d) $B=A^{\prime}$
3. If $L(S)=S$, then for the vector space V, S is a/an
(a) empty set
(b) equal set
(c) equal space
(d) subspace
4. The vector space of all polynomials of degree $\leq n$ on $R[x]$ over R has dimension
(a) $n-1$
(b) n
(c) $n+1$
(d) 1
5. For the linear transformations T_{1} and T_{2} if rank $\left(T_{2} T_{1}\right)=\operatorname{rank} T_{2}$, then
(a) T_{1} is 1-1
(b) T_{2} is 1-1
(c) Both (a) and (b)
(d) Neither (a) nor (b)

Page 2 Code No. : 30339 E
6. The vector of unit length normal to the vector $(1,3,4)$ is
(a) $\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(b) $\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)$
(c) $\quad\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)$
(d) $(1,-3,4)$
7. The inverse of the matrix $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ is
(a) $\quad\left(\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right)$
(b) $\frac{1}{2}\left(\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right)$
(c) $\quad \frac{1}{2}\left(\begin{array}{cc}-4 & 2 \\ 3 & -1\end{array}\right)$
(d) $\left(\begin{array}{cc}-4 & 2 \\ 3 & -1\end{array}\right)$
8. Which of the following is true?
(a) $\operatorname{rank} A>\operatorname{rank}(A, B)$
(b) $\operatorname{rank} A \geq \operatorname{rank}(A, B)$
(c) $\operatorname{rank}(A, B) \leq 0$
(d) $\operatorname{rank} A \leq \operatorname{rank}(A, B)$
9. If zero is an eigen value of A, then
(a) $|A|=0$
(b) $|A| \neq 0$
(c) $|A|>0$
(d) $|A|<0$

Page 3 Code No. : 30339 E
10. The matrix $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right)$ satisfies the equation
(a) $A^{2}-2 A+5 I=0$
(b) $A^{2}-2 A-5 I=0$
(c) $A^{2}+2 A-5 I=0$
(d) $A^{2}+2 A+5 I=0$

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Let V be a vector space over a field F. Prove that a non-empty subset W of V is a subspace if and only if $u, v \in W$ and $\alpha, \beta \in F \Rightarrow \alpha u+\beta v \in W$.

Or
(b) (i) $T: R^{2} \rightarrow R^{2} \quad$ defined by $T(a, b)=(2 a-3 b, a+4 b)$ is a linear transformation. Prove.
(ii) Show that if $T: V \rightarrow W$ is a linear transformation, $T(V)$ is a subspace of W.

Page 4 Code No. : 30339 E
[P.T.O.]
12. (a) Let V be a finite dimensional vector space over F. Then prove that any linearly independent set of vectors in V is a part of a basis.

Or
(b) Show that any two vector spaces of the same dimension over a field F are isomorphic.
13. (a) Let V and W be two finite dimensional vector spaces over F. Let $\operatorname{dim} V=m$ and $\operatorname{dim} W=n$. Show that $L(V, W)$ is a vector space of dimension $m n$ over F.

Or

(b) State and prove Schwartz's inequality and triangle inequality.
14. (a) Find the inverse of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
3 & 1 & -1 \\
-2 & 1 & 3
\end{array}\right)
$$

Or
(b) Show that the system of equations is inconsistent.
$x+2 y+z=11 ; 4 x+6 y+5 z=8 ;$
$2 x+2 y+3 z=19$.

Page 5 Code No. : 30339 E
15. (a) Verify Cayley Hamilton theorem for

$$
A=\left(\begin{array}{ccc}
1 & 0 & -2 \\
2 & 2 & 4 \\
0 & 0 & 2
\end{array}\right)
$$

Or
(b) The product of two eigen values of the matrix $A=\left(\begin{array}{ccc}2 & 2 & -7 \\ 2 & 1 & 2 \\ 0 & 1 & -3\end{array}\right)$ is -12 . Find all eigen values of A.

PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Show that for a vector space V and its subspace W over $F, V / W=\{W+v / v \in V\}$ is a vector space over F.
Or
(b) State and prove fundamental theorem of homomorphism.
17. (a) Show that if $V=A \oplus B$, then $\operatorname{dim} V=\operatorname{dim} A+\operatorname{dim} B$.

Or
(b) Prove that any two bases of a finite dimensional vector space have same number of elements.

Page 6 Code No. : 30339 E
18. (a) Show that every finite dimensional inner product space has an orthonormal basis.

Or

(b) Let W_{1} and W_{2} be subspaces of a finite dimensional inner produce space. Then show that
(i) $\quad\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \cap W_{2}^{\perp}$.
(ii) $\quad\left(W_{1} \cap W_{2}\right)^{\perp}=W_{1}^{\perp}+W_{2}^{\perp}$.
19. (a) Find the rank of the matrix

$$
A=\left(\begin{array}{llll}
4 & 2 & 1 & 3 \\
6 & 3 & 4 & 7 \\
2 & 1 & 0 & 7
\end{array}\right)
$$

Or
(b) For what values of η, the equations are consistent? $x+y+z=1 ; \quad x+2 y+4 z=\eta$; $x+4 y+10 z=\eta^{2}$. And solve them.

Page 7 Code No. : 30339 E
20. (a) State and prove Cayley Hamilton theorem. Using this theorem find the inverse of

$$
A=\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
1 & 2 & 0
\end{array}\right)
$$

Or
(b) Find the eigen values and eigen vectors of the matrix $A=\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right)$.

Page 8 Code No. : 30339 E

Reg. No. :

Code No. : 30341 B Sub. Code : JMMA 62/

JMMC 62

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.
Sixth Semester
Mathematics/Mathematics with CA - Main
COMPLEX ANALYSIS

(For those who joined in July 2016 only)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. $z=0$-ல் $f(z)=|z|^{2}$ என்ற சார்பு ஒரு ஆகும்.
(அ) பகுமுறைச் சார்பு
(ஆ) வகையிடத்தக்கது
(இ) வகையிடத்தக்கதல்ல
(ஈ) தொடர்ச்சியற்றது

At $z=0$, the function $f(z)=|z|^{2}$ is \longrightarrow.
(a) analytic
(b) differentiable
(c) not differentiable
(d) not continuous
2. C.R சமன்பாட்டின் முழுமையான படிவம்
(அ) $f_{x}=i f y$
(ஆ) $f_{x}=i \frac{\partial f}{\partial x}$
(இ) $f_{x}=-i f_{y}$
(ஈ) $\quad f_{x}=i \frac{\partial^{2} f}{\partial x^{2}}$

Complete form of C.R equations is
(a) $\quad f_{x}=$ ify
(b) $f_{x}=i \frac{\partial f}{\partial x}$
(c) $f_{x}=-i f_{y}$
(d) $f_{x}=i \frac{\partial^{2} f}{\partial x^{2}}$
3. ' a ' என்ற மையப்புள்ளியில் ' r ' -ஐ ஆரமாகக் கொண்டது C எனில் $\int_{C} \frac{d z}{z-a}$-ன் மதிப்பு \longrightarrow.
(அ) $2 \pi i$
(ஆ) $-2 \pi i$
(இ) 0
(ஈ) $2 \pi r$

Page 2 Code No. : 30341 B

If C is a circle with centre ' a ' and radius ' r ', then the value of $\int_{C} \frac{d z}{z-a}=\square$.
(a) $2 \pi i$
(b) $-2 \pi i$
(c) 0
(d) $2 \pi r$
4. $\quad C$ என்பது $|z|=r$ என்ற வட்டம் எனில் $\int_{C} \frac{d z}{z}$-ன் மதிப்பு
\longrightarrow.
(அ) πi
(ஆ) $2 \pi i$
(இ) 2π
(ஈ) π

If C is a circle $|z|=r$, then the value of $\int_{C} \frac{d z}{z}$ is
(a) πi
(b) $2 \pi i$
(c) 2π
(d) π
5. $\lim _{z=0} \frac{\sin z}{z}=$
(அ) 0
(ஆ) 1
(இ) ∞
(ஈ) -1
$\lim _{z=0} \frac{\sin z}{z}=\square$.
(a) 0
(b) 1
(c) ∞
(d) -1

Page 3 Code No. : 30341 B
6. $\frac{1}{z(z-i)}$ என்பதன் ஒருமையப் புள்ளிகள்
(அ) 0 மற்றும் 1 (ஆ) 0 மற்றும் i
(இ) 1 மற்றும் 2 (ஈ) 2 மற்றும் 0
The singularities of $\frac{1}{z(z-i)}$ are \longrightarrow.
(a) 0 and 1
(b) 0 and i
(c) 1 and 2
(d) 2 and 0
7. $\int_{0}^{2 \pi} f(\cos \theta, \sin \theta) d \theta$-ஐ மதிப்பீடு செய்யும் போது, $z=$ —— எனப் பிரதியிட வேண்டிம்.
(அ) $z=e^{-i \theta} \quad$ (ஆ) $z=e^{i \theta}$
(இ) $z=2 e^{i \theta}$
(ஈ) $z=2 e^{-i \theta}$
To evaluate $\int_{0}^{2 \pi} f(\cos \theta, \sin \theta) d \theta$, which we substitute for z is \longrightarrow.
(a) $z=e^{-i \theta}$
(b) $z=e^{i \theta}$
(c) $z=2 e^{i \theta}$
(d) $z=2 e^{-i \theta}$

Page 4 Code No. : 30341 B
8. $f(z)=\frac{z^{2}+1}{\left(z^{2}+2 z+2\right)^{2}}$ எனில், வாிசை 1 உடைய பூஜ்யங்கள் ——கும்.
(அ) i மற்றும் $-i$
(ஆ) $1-i$ மற்றும் $1+i$
(இ) $-1+i$ மற்றும் $-1-i$
(ஈ) இவை ஏதுமில்லை
Let $f(z)=\frac{z^{2}+1}{\left(z^{2}+2 z+2\right)^{2}}$. Then \longrightarrow and ——are zeros of order 1 .
(a) i and $-i$
(b) $1-i$ and $1+i$
(c) $-1+i$ and $-1-i$
(d) none of these
9. $w=z+b$-ன் நிலைப்புள்ளிகள் $Z=\square$.
(அ) 0
(ஆ) ∞
(இ) 0 மற்றும் ∞
(ஈ) 1

The fixed points of $w=z+b$ is $Z=$
(a) 0
(b) ∞
(c) 0 and ∞
(d) 1

Page 5 Code No. : 30341 B
10. $w=i z$ என்பது ஒரு சுழற்சியைக் குறிக்க வேண்டுமானால், —— சுழற்ற வேண்டும்.
(அ) $\frac{\pi}{2}$
(ஆ) π
(இ) $\frac{3 \pi}{2}$
(ஈ) 2π
$w=i z$ represents a rotation through an angle
(a) $\frac{\pi}{2}$
(b) π
(c) $\frac{3 \pi}{2}$
(d) 2π

PART B- ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 pages.
11. (அ) $f(z)=e^{-x}(\cos y-i \sin y)$ என்ற சார்புக்கு C.R சமன்பாடுகளளச் சாிபார்க்கவும்.
Verify C.R equations for the function $f(z)=e^{-x}(\cos y-i \sin y)$.

Or
(ஆ) u மற்றும் v என்பன இணை இசைச் சார்புகள் எனில், இவற்றின் பெருக்கல் $u v$-யும் ஓர் இசைசார்பு என நிரூபி.
Show that if u and v are conjugate harmonic functions, $u v$ is a harmonic function.

Page 6 Code No. : 30341 B
12. (அ) $\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t$ என நிரூபி.

Prove that $\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t$.
Or
(ஆ) $\int_{-C} f(z) d z=-\int_{C} f(z) d z$ என நிரூபி.
Prove that $\int_{-C} f(z) d z=-\int_{C} f(z) d z$.
13. (அ) $|z|<1-$-், $\frac{1}{(z+1)(z+3)}$ குறித்து காட்டுவதற்கான டெய்லாின் தொடரைக் காண்க.
Obtain the Taylor's series to represent $\frac{1}{(z+1)(z+3)}$ in $|z|<1$.

Or
(ஆ) லாரண்ட்-ன் தொடரரப் பயன்படுத்தி, $z=1$-ல், $\frac{e^{2 z}}{(z-1)^{2}}$ - ன் எச்சத்தைக் கண்டுபிபி.
Use Laurent's series, find residue of $\frac{e^{2 z}}{(z-1)^{2}}$ at $z=1$.

Page 7 Code No. : 30341 B
14. (அ) Contour தொகையைப் பயன்படுத்தி
$\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$-ன் மதிப்பைக் காண்க.
Using Contour integration, find the value of $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$.
(ஆ) மதிப்பீடு செய்க : $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}$.
Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}$.
15. (அ) $w=\frac{1}{2}$ என்ற சார்புவின் கீழ் $|z-3 i|=3$ என்ற வட்டத்தின் பிம்பத்தைக் கண்டுபிடி.

Find the image of the circle $|z-3 i|=3$ under the map $w=\frac{1}{2}$.

Or
Page 8 Code No. : 30341 B
(ஆ) $w=\frac{5-4 z}{4 z-2}$ என்ற உருமாற்றம், $|z|=1$ என்ற வட்டத்தை 1 என்ற அளவை ஆரமாகவும், $\frac{-1}{2}-ஐ$ மையமாகவும் கொண்ட வட்டத்திற்கு மாற்றும் என நிரூபி.

Show that the transformation $w=\frac{5-4 z}{4 z-2}$ maps the unit circle $|z|=1$ into a circle of radius unity and centre $\frac{-1}{2}$.

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (அ) C.R சமன்பாடுகளை துருவ ஆயங்களில் தருவி.

Derive C.R equations in polar coordinates.
Or
(ஆ) $u(x, y)=a x^{2}-y^{2}+x y$ ஒரு இசைச் சார்பு எனில், மாறிலி a-ன் மதிப்பைக் காண்க. மேலும் u என்பது மெய்ப்பகுதி எனில், பகுமுறைசார்பு $f(z)$ ஐக் காண்க.

If $u(x, y)=a x^{2}-y^{2}+x y$ is harmonic, find the value of ' a '. Find an analytic function $f(z)$ for which u is the real part.

Page 9 Code No. : 30341 B
17. (அ) கோஷி-குர்சாத்தின் தேற்றத்தைக் கூறி நிரூபி.

State and prove Cauchy-Goursat theorem.
Or
(ஆ) மதிப்பிடுக:
(i) $\int_{C} \frac{\sin z d z}{\left(z-\frac{\pi}{2}\right)^{2}}, C$ என்பது $|z|=2$ என்ற ஒரு

வட்டம்
(ii) $\int_{C} \frac{z^{3} d z}{(2 z+i)^{3}} C$ என்பது ஓரு ஓரலகு வட்டம்.

Evaluate :
(i) $\int_{C} \frac{\sin z d z}{\left(z-\frac{\pi}{2}\right)^{2}}$, where C is the circle

$$
|z|=2 .
$$

(ii) $\int_{C} \frac{z^{3} d z}{(2 z+i)^{3}}$ where C is the unit circle.
18. (அ) லாரண்டின் தொடரரக் கூறி நிரூபி.

State and prove Laurent's series.

Or

Page 10 Code No. : 30341 B
(ஆ) $f(z)=\frac{z-1}{z+1}$ என்ற சார்மை
(i) $z=0$ என்ற புள்ளியைப் பொறுத்தும்
(ii) $z=1$ என்ற புள்ளியைப் பொறுத்தும் டெய்லாின் தொடாில் விாித்து எழுதுக. மேலும், குவியும் பகுதியை
(1)-க்கும்,
(2)-க்கும், கண்டுபிடி.

Expand $f(z)=\frac{z-1}{z+1}$ as a Taylor's series
(i) about the point $z=0$ and
(ii) about the point $z=1$. Determine the region of convergence in each case.
19. (அ) மதிப்பிடுக : $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}$.

Evaluate : $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}$.
Or
(ஆ) காண்டூர் தொகையைப் பயன்படித்தி,
$\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$-ன் மதிப்பைக் கண்டுபி|4.
Using the method of Contour integration, evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$.

Page 11 Code No. : 30341 B
20. (அ) சேர்க்கையின் கீழ், இரட்டை ஒருபடி மாற்றத்தின் கணம் ஒரு குலம் என நிரூபி.

Prove that the set of all bilinear transformations is a group under composition.

Or
(ஆ) நான்கு புள்ளிகள் ஒரு வட்டத்தின் மேல் இருக்கும் எனில், அவற்றின் குறுக்கு விகிதம் மெய் என நிரூபி.

Prove that the cross ratio of four points is real when the points lie on a circle.

Page 12 Code No. : 30341 B
\qquad

Code No. : 30341 E Sub. Code : JMMA 62/

JMMC 62

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.
Sixth Semester
Mathematics/Mathematics with CA - Main
COMPLEX ANALYSIS

(For those who joined in July 2016 only)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. At $z=0$, the function $f(z)=|z|^{2}$ is \qquad
(a) analytic
(b) differentiable
(c) not differentiable
(d) not continuous
2. Complete form of C.R equations is
(a) $f_{x}=$ ify
(b) $f_{x}=i \frac{\partial f}{\partial x}$
(c) $f_{x}=-i f_{y}$
(d) $f_{x}=i \frac{\partial^{2} f}{\partial x^{2}}$
3. If C is a circle with centre ' a ' and radius ' r ', then the value of $\int_{C} \frac{d z}{z-a}=\square$.
(a) $2 \pi i$
(b) $-2 \pi i$
(c) 0
(d) $2 \pi r$
4. If C is a circle $|z|=r$, then the value of $\int_{C} \frac{d z}{z}$ is
\qquad
(a) πi
(b) $2 \pi i$
(c) 2π
(d) π
5. $\lim _{z=0} \frac{\sin z}{z}=\square$.
(a) 0
(b) 1
(c) $\quad \infty$
(d) -1

Page 2 Code No. : 30341 E
6. The singularities of $\frac{1}{z(z-i)}$ are -
(a) 0 and 1
(b) 0 and i
(c) 1 and 2
(d) 2 and 0
7. To evaluate $\int_{0}^{2 \pi} f(\cos \theta, \sin \theta) d \theta$, which we substitute for z is
(a) $z=e^{-i \theta}$
(b) $z=e^{i \theta}$
(c) $z=2 e^{i \theta}$
(d) $z=2 e^{-i \theta}$
8. Let $f(z)=\frac{z^{2}+1}{\left(z^{2}+2 z+2\right)^{2}}$. Then \longrightarrow and ——are zeros of order 1.
(a) i and $-i$
(b) $1-i$ and $1+i$
(c) $-1+i$ and $-1-i$
(d) none of these
9. The fixed points of $w=z+b$ is $Z=\square$.
(a) 0
(b) ∞
(c) 0 and ∞
(d) 1

Page 3 Code No. : 30341 E
10. $w=i z$ represents a rotation through an angle
(a) $\frac{\pi}{2}$
(b) π
(c) $\frac{3 \pi}{2}$
(d) 2π

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 pages.
11. (a) Verify C.R equations for the function $f(z)=e^{-x}(\cos y-i \sin y)$.

Or
(b) Show that if u and v are conjugate harmonic functions, $u v$ is a harmonic function.
12. (a) Prove that $\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t$.

Or
(b) Prove that $\int_{-C} f(z) d z=-\int_{C} f(z) d z$.

Page 4 Code No. : 30341 E
[P.T.O.]
13. (a) Obtain the Taylor's series to represent $\frac{1}{(z+1)(z+3)}$ in $|z|<1$.

Or
(b) Use Laurent's series, find residue of $\frac{e^{2 z}}{(z-1)^{2}}$ at $z=1$.
14. (a) Using Contour integration, find the value of $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$.
(b) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{\text { Or }} \frac{d \theta \sin \theta}{5+}$
15. (a) Find the image of the circle $|z-3 i|=3$ under the map $w=\frac{1}{2}$.

Or
(b) Show that the transformation $w=\frac{5-4 z}{4 z-2}$ maps the unit circle $|z|=1$ into a circle of radius unity and centre $\frac{-1}{2}$.

Page 5 Code No. : 30341 E

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Derive C.R equations in polar coordinates.

Or
(b) If $u(x, y)=a x^{2}-y^{2}+x y$ is harmonic, find the value of ' a '. Find an analytic function $f(z)$ for which u is the real part.
17. (a) State and prove Cauchy-Goursat theorem.

Or

(b) Evaluate:
(i) $\int_{C} \frac{\sin z d z}{\left(z-\frac{\pi}{2}\right)^{2}}$, where C is the circle

$$
|z|=2
$$

(ii) $\int_{C} \frac{z^{3} d z}{(2 z+i)^{3}}$ where C is the unit circle.
18. (a) State and prove Laurent's series.

Or
Page 6 Code No. : 30341 E
(b) Expand $f(z)=\frac{z-1}{z+1}$ as a Taylor's series
(i) about the point $z=0$ and
(ii) about the point $z=1$. Determine the region of convergence in each case.
19. (a) Evaluate : $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}$.

Or
(b) Using the method of Contour integration, evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$.
20. (a) Prove that the set of all bilinear transformations is a group under composition.

Or
(b) Prove that the cross ratio of four points is real when the points lie on a circle.

Page 7 Code No. : 30341 E

Reg. No. :

\qquad

Code No. : 30342 B Sub. Code : JMMA 63/

 JMMC 63B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics/Mathematics with CA - Main
NUMBER THEORY
(For those who joined in July 2016 only)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. குறைவற்ற முழுக்களளக் கொண்ட எந்த ஒரு வெற்றற்ற கணமும் ——றுப்பைக் கொண்டிருக்கும்.
(அ) மீசீசிறு (ஆ) மீப்பெரு
(இ) பூஜ்யம் (ஈ) முடிலிலி
Every non empty set S of nonnegative integers contains a - element.
(a) least
(b) greatest
(c) zero
(d) infinity
2. $\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\ldots=$
(அ) 2^{n}
(ஆ) 2^{n-1}
(இ) 2^{n+1}
(ஈ) 0
$\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\ldots=$
(a) 2^{n}
(b) 2^{n-1}
(c) 2^{n+1}
(d) 0
3. t_{n} என்பது n-வது முக்கோண எண் எனில் $t_{n}=$
(அ) $\binom{n}{2}$
(ஆ) $\binom{n-1}{2}$
(இ) $\frac{n+1}{2}$
(ஈ) $\quad\binom{n+1}{2}$

If t_{n} is the nth triangular number, then $t_{n}=$
(a) $\binom{n}{2}$
(b) $\quad\binom{n-1}{2}$
(c) $\frac{n+1}{2}$
(d) $\binom{n+1}{2}$

Page 2 Code No. : 30342 B
4. மீ.சி.ம $(a, b)=a b$ என இருக்கத் தேவையானதும்

போதுமானதுமான நிபந்தdை ——
(அ) மீ.பொ.வ $(a, b)=1$
(ஆ) மீ.பொ.வ $(a, b)=a$
(இ) மீ.பொ.வ $(a, b)=b$
(ஈ) மீ.பொ.வ $(a, b)=a b$
$\operatorname{lcm}(a, b)=a b$ if and only if \longrightarrow.
(a) $\operatorname{gcd}(a, b)=1$
(b) $\operatorname{gcd}(a, b)=a$
(c) $\operatorname{gcd}(a, b)=b$
(d) $\operatorname{gcd}(a, b)=a b$
5. $\quad 5^{\#}+1=\square$.
(அ) 5
(ஆ) 6
(இ) 11
(ஈ) 31
$5^{\#}+1=$ \qquad
(a) 5
(b) 6
(c) 11
(d) 31
6. 360-ன் நியமன வடிவம்
(அ) $300+60+0$
(ஆ) $3+6+0$
(இ) $5 \times 8 \times 9$
(ஈ) $2^{3} \cdot 3^{2} .5$

Page 3 Code No. : 30342 B

The canonical form of 360 is - .
(a) $300+60+0$
(b) $3+6+0$
(c) $5 \times 8 \times 9$
(d) $2^{3} .3^{2} .5$
7. $1!+2$! $+\ldots+100$! -ஐ 12 -ஆல் வகுக்க கிடைக்கும் மீதி
(அ) 0
(ஆ) 9
(இ) 11
(ஈ) 1

The remainder when we divide $1!+2!+\ldots+100$! by 12 is \qquad
(a) 0
(b) 9
(c) 11
(d) 1
8. $-15 \equiv \longrightarrow(\bmod 7)$.
(அ) 64
(ஆ) -20
(இ) -64
(ஈ) 0
$-15 \equiv$ \qquad $(\bmod 7)$.
(a) 64
(b) $\quad-20$
(c) -64
(d) 0
9. $\quad p$ மற்றும் q வெவ்வேறு பகா எண்கள் மற்றும் $a^{p} \equiv a(\bmod q), \quad a^{q} \equiv a(\bmod p) \quad$ எனில் $\quad a^{p q} \equiv$ $-(\bmod p q)$.
(அ) a^{2}
(ஆ) 1
(இ) a
(ஈ) 0

Page 4 Code No. : 30342 B

| If $p \quad$ and $\quad q \quad$ are \quad distinct primes | with | |
| :--- | :--- | :---: | :---: |
| $a^{p} \equiv a(\bmod q)$ | and $\quad a^{q} \equiv a(\bmod p)$, | then |
| $a^{p q} \equiv$ | $(\bmod p q)$ | |

(a) a^{2}
(b) 1
(c) a
(d) 0
10. மீச்சிறு பொய்மை பகா எண் ——.
(அ) 2
(ஆ) 101
(இ) 341
(ஈ) 1001

The least pseudoprime is - .
(a) 2
(b) 101
(c) 341
(d) 1001

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) முடிவறு மறுதருவித்தலின் முதலாவது தத்துவத்தைக் கூறி நிரூபி.

State and prove the first principle of finite induction.

Or
(ஆ) பாஸ்கல்-ன் விதியை கூறி நிறுவுக.
State and prove Pascal's rule.

Page 5 Code No. : 30342 B
12. (அ) எந்த ஓரு $a \geq 1$-க்கும் $a\left(a^{2}+2\right) / 3$ ஓரு முழு எண் என நிரூபி.
Prove that $a\left(a^{2}+2\right) / 3$ is an integer for all $a \geq 1$ 。

Or
(ஆ) யூக்ளிடியன் வழிமுறையைப் பயன்படுத்தி மீ.பொ.வ $(12378,3054)$ காண்.
Find g.c.d. $(12378,3054)$ using Euclidean algorithm.
13. (அ) பகா எண்களின் எண்ணிக்கை முடிவில்லாதது என நிரூபி.
Show that the number of primes is infinite.
Or
(ஆ) p_{n} என்பது n-வது பகா எண் எனில்
$p_{n} \leq 2^{2^{n-1}}$ எனக் காட்டுக.
If p_{n} is the nth prime number, prove that $p_{n} \leq 2^{2^{n-1}}$.
14. (அ) $c a \equiv c b(\bmod n)$ எனில் $a \equiv b\left(\bmod \frac{n}{d}\right)$, $d=$ மீ.பொ.வ (c, n) என நிரூபி.
If $c a \equiv c b(\bmod n)$, then prove that $a \equiv b\left(\bmod \frac{n}{d}\right)$, where $d=\operatorname{gcd}(c, n)$.

Or
Page 6 Code No. : 30342 B
(ஆ) $9 x \equiv 21(\bmod 30)$ என்ற நோியல் சர்வ சமன்பாட்டைத் தீர்.

Solve the linear congruence $9 x \equiv 21(\bmod 30)$.
15. (அ) பெர்மாட்-ன் தேற்றத்தைக் கூறி நிறுவுக.

State and prove Fermat's theorem.
Or
(ஆ) 12499-ஐ காரணிபடித்துக.
Factorize the number 12499.

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (அ) (i) ஆர்க்கிமிடியன் பண்பபக் கூறி நிறுவுக.
(ii) நியூட்டனின் சமன்பாட்டை வருவி.
(i) State and prove the Archimedean Property.
(ii) Derive Newton's identity.

Or
(ஆ) ஈருறுப்புத் தேற்றத்தைக் கூறி நிரூபி.
State and prove the binomial theorem.
Page 7 Code No. : 30342 B
17. (அ) a மற்றும் b ஆகியன இரண்டிம் பூஜ்யமாகாத முழுக்கள் எனில் மீ.பொ.வ $(a, b)=a x+b y$ என அமையுமாறு இரு எண்கள் x மற்றும் y இருக்கும் என நிரூபி.
Given integers a and b, not both of which are zero, show that there exist integers x and y such that $\operatorname{gcd}(a, b)=a x+b y$.

Or
(ஆ) ஒரு வாடிக்கையாளா் ரூ. 132-க்கு ஆப்பி் மற்றும் ஆரஞ்சு பழங்கள் 12 வாங்குகிறாா். ஒரு ஆப்பள் பழத்தின் விலை ஓரு ஆரஞ்சு பழத்தின் விலையை விட ரூ. 3 அதிகம் ஆகும். மேலும் ஆப்பிள்களின் எண்ணிக்கை ஆரஞ்சுளின் எண்ணிக்கையை விட அதிகம் எனில் ஒவ்வொரு வகையிலும் எத்தனை பழங்கள் வாங்கினார்?
A customer bought a dozen pieces of fruit, 12 apples and oranges for Rs. 132. If an apple costs Rs. 3 more than an orange and more apples than oranges were purchased, how many pieces of each kind were bought?
18. (அ) கணித அடிப்படைத் தேற்றத்தைக் கூறி நிறுவுக.

State and prove the fundamental theorem of arithmetic.

Or
Page 8 Code No. : 30342 B
(ஆ) (i) $\sqrt{2}$ ஒரு விகிதமுறா எண் என நிரூபி.
(ii) $4 n+3$ என்ற வடிவில் எண்ணற்ற பகா எண்கள் இருக்கும் எனக்காட்டுக.
(i) Prove that $\sqrt{2}$ is irrational.
(ii) Show that there are an infinite number of primes of the form $4 n+3$.
19. (அ) $a x \equiv b(\bmod n)$ என்ற நோியல் சர்வ சமன்பாட்டிற்கு ஒரு தீர்வு இருக்கத் தேவையானதும் போதுமானதுமான நிபந்தனை $d \mid b, d=$ மீ.பொ.வ (a, n) என நிரூபி. மேலும் $d \mid b$ எனில் ஒன்றுக்கொன்று சர்வசமமற்ற d தீர்வுகள் இருக்கும் எனக் காட்டுக.

Prove that the linear congruence $a x \equiv b(\bmod n)$ has a solution if and only if $d \mid b$ where $d=\operatorname{gcd}(a, n)$. If $d \mid b$, then it has d mutually incongruent solutions modulo n.

Or
(ஆ) சைனீசின் மீதி தேற்றத்தைக் கூறி நிரூபி.
State and prove Chinese reminder theorem.
Page 9 Code No. : 30342 B
20. (அ) $\quad p$ ஓர் ஓற்றைப் பகா எண் என்க. $x^{2}+1=0(\bmod p)$ என்ற இருபடி சர்வ சமன்பாட்டிற்குத் தீர்வு அமைய தேவையானதும் போதுமானதுமான நிபந்தனை $p \equiv 1(\bmod 4)$ எனக் காட்டுக.

Let p be an odd prime. Prove that the quadratic congruence $x^{2}+1=0(\bmod p)$ has a solution if and only if $p \equiv 1(\bmod 4)$.

Or
(ஆ) வில்சனின் தேற்றத்தைக் கூறி நிறுவுக.
State and prove Wilson's theorem.

Reg. No. : \qquad

Code No. : 30342 E Sub. Code : JMMA 63/

JMMC 63

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.
Sixth Semester
Mathematics/Mathematics with CA - Main
\section*{NUMBER THEORY}

(For those who joined in July 2016 only)
Time : Three hours
Maximum : 75 marks

PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. Every non empty set S of nonnegative integers contains a \qquad element.
(a) least
(b) greatest
(c) zero
(d) infinity
2. $\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\ldots .=$
(a) 2^{n}
(b) 2^{n-1}
(c) 2^{n+1}
(d) 0
3. If t_{n} is the nth triangular number, then $t_{n}=$
(a) $\binom{n}{2}$
(b) $\quad\binom{n-1}{2}$
(c) $\frac{n+1}{2}$
(d) $\binom{n+1}{2}$
4. $\quad \operatorname{lcm}(a, b)=a b$ if and only if -
(a) $\operatorname{gcd}(a, b)=1$
(b) $\operatorname{gcd}(a, b)=a$
(c) $\operatorname{gcd}(a, b)=b$
(d) $\operatorname{gcd}(a, b)=a b$
5. $5^{\#}+1=$
(a) 5
(b) 6
(c) 11
(d) 31
6. The canonical form of 360 is -
(a) $300+60+0$
(b) $3+6+0$
(c) $5 \times 8 \times 9$
(d) $2^{3} .3^{2} .5$

Page 2 Code No. : 30342 E
7. The remainder when we divide $1!+2!+\ldots+100$! by 12 is \qquad
(a) 0
(b) 9
(c) 11
(d) 1
8. $-15 \equiv \longrightarrow(\bmod 7)$.
(a) 64
(b) -20
(c) -64
(d) 0
9. If p and q are distinct primes with $\alpha^{p} \equiv \alpha(\bmod q)$ and $\quad a^{q} \equiv a(\bmod p)$, then $a^{p q} \equiv \longrightarrow(\bmod p q)$.
(a) a^{2}
(b) 1
(c) a
(d) 0
10. The least pseudoprime is - .
(a) 2
(b) 101
(c) 341
(d) 1001

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) State and prove the first principle of finite induction.

Or
(b) State and prove Pascal's rule.

Page 3 Code No. : 30342 E
12. (a) Prove that $a\left(a^{2}+2\right) / 3$ is an integer for all $a \geq 1$.

Or
(b) Find g.c.d. (12378, 3054) using Euclidean algorithm.
13. (a) Show that the number of primes is infinite.

Or
(b) If p_{n} is the nth prime number, prove that $p_{n} \leq 2^{2^{n-1}}$.
14. (a) If $c a \equiv c b(\bmod n)$, then prove that $a \equiv b\left(\bmod \frac{n}{d}\right)$, where $d=\operatorname{gcd}(c, n)$.

Or
(b) Solve the linear congruence $9 x \equiv 21(\bmod 30)$.
15. (a) State and prove Fermat's theorem.
Or
(b) Factorize the number 12499.

Page 4 Code No. : 30342 E

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) (i) State and prove the Archimedean Property.
(ii) Derive Newton's identity.

Or
(b) State and prove the binomial theorem.
17. (a) Given integers a and b, not both of which are zero, show that there exist integers x and y such that $\operatorname{gcd}(a, b)=a x+b y$.

Or
(b) A customer bought a dozen pieces of fruit, 12 apples and oranges for Rs. 132. If an apple costs Rs. 3 more than an orange and more apples than oranges were purchased, how many pieces of each kind were bought?
18. (a) State and prove the fundamental theorem of arithmetic.

> Or
(b) (i) Prove that $\sqrt{2}$ is irrational.
(ii) Show that there are an infinite number of primes of the form $4 n+3$.

Page 5 Code No. : 30342 E
19. (a) Prove that the linear congruence $a x \equiv b(\bmod n)$ has a solution if and only if $d \mid b$ where $d=\operatorname{gcd}(a, n)$. If $d \mid b$, then it has d mutually incongruent solutions modulo n.

Or
(b) State and prove Chinese reminder theorem.
20. (a) Let p be an odd prime. Prove that the quadratic congruence $x^{2}+1=0(\bmod p)$ has a solution if and only if $p \equiv 1(\bmod 4)$.

Or
(b) State and prove Wilson's theorem.

Page 6 Code No. : 30342 E

Reg. No. :

Code No. : 30343 B Sub. Code : JMMA 64/
 JMMC 64

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.
Sixth Semester
Mathematics/ Mathematics with CA - Main
\section*{GRAPH THEORY}

(For those who joined in July 2016 only)
Time : Three hours
Maximum : 75 marks

$$
\text { PART A }-(10 \times 1=10 \text { marks })
$$

Answer ALL questions.
Choose the correct answer :

1. $\quad \operatorname{deg}\left(v_{1}\right)=3 \quad \operatorname{deg}\left(v_{2}\right)=2 ; \quad \operatorname{deg}\left(v_{3}\right)=2 ; \quad \operatorname{deg}\left(v_{4}\right)=2$ என்ற நான்கு புள்ளிகள் கொண்ட வரைகளின் எண்ணிக்கை
(அ) 1
(ஆ) 2
(இ) 3
(ஈ) 0

The number of graphs a with four vertices having $\operatorname{deg}\left(v_{1}\right)=3 \operatorname{deg}\left(v_{2}\right)=2 ; \operatorname{deg}\left(v_{3}\right)=2 ; \operatorname{deg}\left(v_{4}\right)=2$
(a) 1
(b) 2
(c) 3
(d) 0
2. முக்கோணமற்ற p புள்ளிகள் கொண்ட வரையில் உள்ள கோடுகளின் எண்ணிக்கையின் அதிகபட்சம் \qquad ஆகும்.
(அ) $\left[\frac{p^{2}}{4}\right]$
(ஆ) $\left[\frac{p^{2}}{2}\right]$
(இ) $\left[\frac{p^{2}}{3}\right]$
(ஈ) $\left[\frac{p^{2}}{6}\right]$

The maximum number of lines among all p point graphs with no triangles is \qquad _.
(a) $\left[\frac{p^{2}}{4}\right]$
(b) $\left[\frac{p^{2}}{2}\right]$
(c) $\left[\frac{p^{2}}{3}\right]$
(d) $\left[\frac{p^{2}}{6}\right]$
3. 10 புள்ளிகள் கொண்ட ஒரு மரத்தில் 3 புள்ளிகள் ஒரு படி கொண்டவை எனில் வெட்டு புள்ளிகளின் எண்ணிக்கை
\qquad ஆகும்.
(அ) 3
(ஆ) 7
(இ) 1-க்கும் 7-க்கும் இடைப்பட்ட ஏதேனும் ஒரு எண்
(ஈ) 1-க்கும் 10-க்கும் இடைப்பட்ட ஏதேனும் ஒரு எண்
Page 2 Code No. : 30343 B

Support T is a tree with 10 points among which 3 are pendent points then the number of cut points in T is equal to
(a) 3
(b) 7
(c) any number between 1 to 7
(d) any number between 1 to 10
4. என்ற மரத்தின் மையம்

(அ) f, g
(ஆ) g, j
(இ) h, i, g
(ஈ) g
The contre(s) of the tree

(a) f, g
(b) g, j
(c) h, i, g
(d) g

Page 3 Code No. : 30343 B
5. $\quad G$ என்பது (p, q)-மீப்பெரு தள வரை எனில்
(அ) $q=3 p+6$
(ஆ) $p=3 q-6$
(இ) $p=\frac{q+6}{3}$
(ศ) $\quad q=3 p-4$

If G is a maximal planar (p, q) graph then
(a) $q=3 p+6$
(b) $p=3 q-6$
(c) $p=\frac{q+6}{3}$
(d) $q=3 p-4$
6. ஒரு (p, q)-வரை G என்பது அய இரட்டை எனில்
(அ) $q=3 p-6$
(ஆ) $q=2 p-3$
(இ) $q=2 p-2$
(ஈ) $q=3 p+6$

If a (p, q) graph G is self dual then
(a) $q=3 p-6$
(b) $q=2 p-3$
(c) $q=2 p-2$
(d) $q=3 p+6$
7. G என்பது ஒரு (p, q) வரை எனில்
(அ) $\quad q \geq\binom{ p}{2}$
(ஆ) $q=\binom{p}{2}$
(இ) $q<\binom{p}{2}$
(ஈ) $\quad q \leq\binom{ p}{2}$

Page 4 Code No. : 30343 B

If G is a (p, q) graph then
(a) $\quad q \geq\binom{ p}{2}$
(b) $\quad q=\binom{p}{2}$
(c) $\quad q<\binom{p}{2}$
(d) $\quad q \leq\binom{ p}{2}$
8. \qquad எனில் G என்பது ஒரு கோட்டு வரை என அழைக்கப்படுகிறது.
(அ) ஏதேனும் ஒரு H-க்கு $G \cong L(H)$
(ஆ) அனைத்து H-க்கும் $G \cong L(H)$
(இ) ஒரு H-க்கு $G \cong L(H)$
(ஈ) எந்த இரு $H-\dot{க ் க ு ~} G \cong L(H)$
A graph G is called a line graph if
(a) $\quad G \cong L(H)$ for some H
(b) $\quad G \cong L(H)$ for all H
(c) $G \cong L(H)$ for one H
(d) $G \cong L(H)$ for two H

Page 5 Code No. : 30343 B
9. ஒரு சக்கரத்தில் ஓற்றை எண்ணிக்கையில் புள்ளிகள் இருந்தால் அதன் வண்ண எண் \qquad ஆகும்.
(அ) 4
(ஆ) 5
(இ) 3
(*) 2

A wheel has chromatic number \qquad if is has an odd number of points.
(a) 4
(b) 5
(c) 3
(d) 2
10. G என்பது ஒரு வரை எனில்
(அ) $x=\Delta+1$
(ஆ) $x \geq \Delta+1$
(இ) $x \leq \Delta+1$
(ஈ) $x=\Delta$

If G is any graph then
(a) $x=\Delta+1$
(b) $x \geq \Delta+1$
(c) $x \leq \Delta+1$
(d) $x=\Delta$

PART B-($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) எந்தவொரு ஹேமில்டோனியன் வரையும் 2-தொடுக்கப்பட்டவை என நிரூபி.

Prove that every hamitonian graph is 2-connected.

Or
Page 6 Code No. : 30343 B
(ஆ) G என்பது தொடுக்கப்பட்டவை அல்ல எனில் \bar{G} தொடுக்கப்பட்டவை என நிரூபி.

If G is not connected then prove that \bar{G} is connected.
12. (அ) எந்தவொரு தொடித்த வரரயிலும் ஒரு விாிக்கும் மரம் இருக்கும் என நிரூபி.

Prove that every connected graph has a spanning tree.

Or

(ஆ) G என்ற அற்பமற்ற எந்தவொரு மரத்திலும் படி 1 கொண்ட புள்ளிகள் குறைந்தபட்சம் இரண்டு இருக்கும் என நிரூபி.

Prove that every non-trivial tree G has atleast two vertices of degree.
13. (அ) K_{5} என்ற வரை தளத்தில் வரையத்தக்கதல்ல என நிரூபி.

Prove that the graph K_{5} is not planar.
Or
Page 7 Code No. : 30343 B
(ஆ) G என்பது ஓவ்வொரு முகமும் ஒரு n-சுற்று எனக்
கொண்ட (p, q) தள வரை எனில் $q=\frac{n(p-2)}{n-2}$
எனக்காட்டுக.
If G is a (p, q) plane graph in which every face is an n cycle then prove that $q=\frac{n(p-2)}{n-2}$.
14. (அ) எந்தவொரு வரரயும் வெட்டு வரை என நிரூபி.

Prove that every graph is an intersection graph.

Or
(ஆ) கீழ்க்கண்ட வரையின் அடுத்த அணி காண்

Write the adjacency matrix of the graph given below.

Page 8 Code No. : 30343 B
15. (அ) கீழ்க்கண்ட வரைக்கு வண்ண எண் 3 எனக் கொண்ட வண்ண பகுப்பு காண்.

Write the charomatic partitioning which has chromatic number 3 of the graph given below.

Or
(ஆ) $\lambda^{4}-3^{3}+3 \lambda^{2}$ என்பது எந்த வரைக்கும் வண்ண பல்லுறுப்புக் கோவையாக அமையாது என நிரூபி.

Prove that $\lambda^{4}-3^{3}+3 \lambda^{2}$ cannot be the chromatic polynomial of any graph.

Page 9 Code No. : 30343 B

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) G என்ற ஒரு வரை தொடுக்கப்பட்டதாக இருந்தால் மற்றும் இருந்தால் மட்டுமே $v \quad$-ஐ v_{1} மற்றும் v_{2} என்ற உட்கணங்களாக பிரிக்கும் எந்தவொரு பிாிப்பலும் v_{1}-ல் ஓரு புள்ளியைம் $v_{2}-$ ல் ஒரு புள்ளியையும் இணைக்கும் ஒரு கோடு இருக்கும் எனக்காட்டுக.

Prove that a graph G is connected iff for any partition of v into subsets v_{1} and v_{2} there is a line of G joining a point of v_{1} to point of v_{2}.

Or
(ஆ) ஒரு வரை ஹேமில்டோனியனாக இருந்தால் மற்றும் இருந்தால் மட்டுமே அதன் மூடலும் ஹேமில்டோனியனாக இருக்கும் என நிரூபி.

Prove that a graph is hamiltonian if its closure is hamiltonian.

Page 10 Code No. : 30343 B
17. (அ) G என்பது ஓரு (p, q) வரை என்க. எனில் கீழ்கண்ட கூற்றுகள் சமானமானவை என நிரூபி.
(i) G ஓரு மரம்
(ii) $\quad G$-ன் எந்த இரு புள்ளிகளளயும் ஒரு தனித்த பாதை இணைக்கும்
(iii) G தொடுக்கப்பட்டது மற்றும் $p=q+1$
(iv) G சுற்றற்றது மற்றும் $p=q+1$.

Let G be a (p, q) graph. The following statements are equivalent
(i) G is a tree
(ii) Every two points of G are joined by a unique path
(iii) G is connected and $p=q+1$
(iv) G is cyclic and $p=q+1$.

Or
(ஆ) எந்தவொரு மரத்தின் மையத்திலும் ஒரு புள்ளி அல்லது இரு அடுத்தடுத்த புள்ளிகள் இருக்கும் எனக்காட்டிக.

Prove that every tree has a centre consisting of either one point.

Page 11 Code No. : 30343 B
18. (அ) ஒரு வரையை கோளத்தின் மேற்பரப்பில் பதிக்க முடிந்தால் மற்றும் முடிந்தால் மட்டுமே அதை ஒரு தளத்தில் பதிக்க முடியும் என நிரூப.

Prove that a graph can be embedded in the surface of a sphere iff it can be embedded in a plane.

Or

(ஆ) $p \geq 3$ புள்ளிகள் கொண்ட தளத்தில் வரரயக்கூடிய வரையில் படி 6-ஐ விடக் குறைந்த புள்ளிகள் குறைந்தபட்சம் மூன்று இருக்கும் எனக்ாட்டுக.

Prove that every planar graph G with $p \geq 3$ points has atleast three points of degree less than 6.
19. (அ) G என்பது ஒரு (p, q)-வரை என்க. எனில் $L(G)$ என்பது ஒரு $\left(q, q_{2}\right)$-வரை என நிரூபி. இதில்
$q_{L}=\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}^{2}\right)-q$ ஆகும்.
Let G be a (p, q) graph. Then prove that $L(G)$ is a $\left(q, q_{2}\right)$ graph where $q_{L}=\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}^{2}\right)-q$.

Or
Page 12 Code No. : 30343 B
(ஆ) G_{1} என்பது ஓரு $\left(p_{1}, q_{1}\right)$-வரை மற்றும் G_{2} என்பது ஒரு $\left(p_{1}, q_{1}\right)$ வரை என்க.
(i) $G_{1} \cup G_{2}$ ஒரு $\left(p_{1}+p_{2}, q_{1}+q_{2}\right)$ வரை ஆகும்
(ii) $G_{1}+G_{2}$ ஒரு $\left(p_{1}+p_{2}, q_{1}+q_{2}, p_{1} p_{2}\right)$ வரை ஆகும்
(iii) $G_{1} \times G_{2}$ ஒரு $\left(p_{1} p_{2}, q_{1} p_{2},+q_{2} p_{1}\right)$ வரை ஆகும்
(iv) $G_{1}\left[G_{2}\right]$ ஒரு $\left(p_{1} p_{2}, p_{1} q_{2}+p_{2}^{2} q_{1}\right)$ வரை ஆகும்.

Let G_{1} be a $\left(p_{1}, q_{1}\right)$ graph and G_{2} be a $\left(p_{2}, q_{2}\right)$ graph. Then prove that
(i) $\quad G_{1} \cup G_{2}$ is a $\left(p_{1}+p_{2}, q_{1}+q_{2}\right)$ graph
(ii) $G_{1}+G_{2}$ is a $\left(p_{1}+p_{2}, q_{1}+q_{2}, p_{1} p_{2}\right)$ graph
(iii) $G_{1} \times G_{2}$ is a $\left(p_{1} p_{2}, q_{1} p_{2},+q_{2} p_{1}\right)$ graph
(iv) $G_{1}\left[G_{2}\right]$ is a $\left(p_{1} p_{2}, p_{1} q_{2}+p_{2}^{2} q_{1}\right)$ graph.
20. (அ) G என்ற ஒரு வரையில் M என்ற ஒரு பொருத்தம் மீப்பெரு பொருத்தமாய் இருந்தால் மற்றும் இருந்தால் மட்டுமே G-ல் M-பெருக்கும் பாதை இருக்காது என நிரூபி.

Prove that a matching M in a graph G is a maximum matching if and only if G contains no M-augumenting path.

Or
(ஆ) $K_{2 n}$ என்ற முழுமையான வரையில் உள்ள கச்சிதமான பொருத்தங்களின் எண்ணிக்கை காண்.
Find the number of perfect matchings in the complete graph $K_{2 n}$.

Page 14 Code No. : 30343 B
\qquad

Code No. : 30343 E Sub. Code : JMMA 64/

JMMC 64

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.
Sixth Semester
Mathematics/ Mathematics with CA - Main
GRAPH THEORY

(For those who joined in July 2016 only)
Time : Three hours
Maximum : 75 marks

$$
\text { PART A }-(10 \times 1=10 \text { marks })
$$

Answer ALL questions.

Choose the correct answer :

1. The number of graphs a with four vertices having $\operatorname{deg}\left(v_{1}\right)=3 \operatorname{deg}\left(v_{2}\right)=2 ; \operatorname{deg}\left(v_{3}\right)=2 ; \operatorname{deg}\left(v_{4}\right)=2$
(a) 1
(b) 2
(c) 3
(d) 0
2. The maximum number of lines among all p point graphs with no triangles is \qquad .
(a) $\left[\frac{p^{2}}{4}\right]$
(b) $\left[\frac{p^{2}}{2}\right]$
(c) $\left[\frac{p^{2}}{3}\right]$
(d) $\left[\frac{p^{2}}{6}\right]$
3. Support T is a tree with 10 points among which 3 are pendent points then the number of cut points in T is equal to
(a) 3
(b) 7
(c) any number between 1 to 7
(d) any number between 1 to 10
4. The contre(s) of the tree

(a) f, g
(b) g, j
(c) h, i, g
(d) g

Page 2 Code No. : 30343 E
5. If G is a maximal planar (p, q) graph then
(a) $q=3 p+6$
(b) $p=3 q-6$
(c) $p=\frac{q+6}{3}$
(d) $q=3 p-4$
6. If a (p, q) graph G is self dual then
(a) $q=3 p-6$
(b) $q=2 p-3$
(c) $q=2 p-2$
(d) $q=3 p+6$
7. If G is a (p, q) graph then
(a) $\quad q \geq\binom{ p}{2}$
(b) $\quad q=\binom{p}{2}$
(c) $\quad q<\binom{p}{2}$
(d) $\quad q \leq\binom{ p}{2}$
8. A graph G is called a line graph if
(a) $\quad G \cong L(H)$ for some H
(b) $G \cong L(H)$ for all H
(c) $\quad G \cong L(H)$ for one H
(d) $\quad G \cong L(H)$ for two H

Page 3 Code No. : 30343 E
9. A wheel has chromatic number \qquad if is has an odd number of points.
(a) 4
(b) 5
(c) 3
(d) 2
10. If G is any graph then
(a) $x=\Delta+1$
(b) $x \geq \Delta+1$
(c) $x \leq \Delta+1$
(d) $x=\Delta$

PART B $-(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Prove that every hamitonian graph is 2-connected.

Or

(b) If G is not connected then prove that \bar{G} is connected.
12. (a) Prove that every connected graph has a spanning tree.
Or
(b) Prove that every non-trivial tree G has atleast two vertices of degree.

Page 4 Code No. : 30343 E
[P.T.O.]
13. (a) Prove that the graph K_{5} is not planar.

Or
(b) If G is a (p, q) plane graph in which every face is an n cycle then prove that $q=\frac{n(p-2)}{n-2}$.
14. (a) Prove that every graph is an intersection graph.

Or
(b) Write the adjacency matrix of the graph given below.

15. (a) Write the charomatic partitioning which has chromatic number 3 of the graph given below.

(b) Prove that $\lambda^{4}-3^{3}+3 \lambda^{2}$ cannot be the chromatic polynomial of any graph.

Page 5 Code No. : 30343 E

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Prove that a graph G is connected iff for any partition of v into subsets v_{1} and v_{2} there is a line of G joining a point of v_{1} to point of v_{2}.

Or
(b) Prove that a graph is hamiltonian if its closure is hamiltonian.
17. (a) Let G be a (p, q) graph. The following statements are equivalent
(i) G is a tree
(ii) Every two points of G are joined by a unique path
(iii) G is connected and $p=q+1$
(iv) G is cyclic and $p=q+1$.

Or

(b) Prove that every tree has a centre consisting of either one point.

Page 6 Code No. : 30343 E
18. (a) Prove that a graph can be embedded in the surface of a sphere iff it can be embedded in a plane.

Or

(b) Prove that every planar graph G with $p \geq 3$ points has atleast three points of degree less than 6.
19. (a) Let G be a (p, q) graph. Then prove that $L(G)$ is a $\left(q, q_{2}\right)$ graph where $q_{L}=\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}^{2}\right)-q$.

Or

(b) Let G_{1} be a $\left(p_{1}, q_{1}\right)$ graph and G_{2} be a $\left(p_{2}, q_{2}\right)$ graph. Then prove that
(i) $\quad G_{1} \cup G_{2}$ is a $\left(p_{1}+p_{2}, q_{1}+q_{2}\right)$ graph
(ii) $G_{1}+G_{2}$ is a $\left(p_{1}+p_{2}, q_{1}+q_{2}, p_{1} p_{2}\right)$ graph
(iii) $G_{1} \times G_{2}$ is a $\left(p_{1} p_{2}, q_{1} p_{2}+q_{2} p_{1}\right)$ graph
(iv) $G_{1}\left[G_{2}\right]$ is a $\left(p_{1} p_{2}, p_{1} q_{2}+p_{2}^{2} q_{1}\right)$ graph.

Page 7 Code No. : 30343 E
20. (a) Prove that a matching M in a graph G is a maximum matching if and only if G contains no M-augumenting path.

Or
(b) Find the number of perfect matchings in the complete graph $K_{2 n}$.

Page 8 Code No. : 30343 E

Reg. No. :

Code No. : 30369 B Sub. Code : JMMA 6 A

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics -Main
Major Elective-III — FUZZY MATHEMATICS
(For those who joined in July 2016 only)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. கொடுக்கப்பட்ட கணம் A யின் எல்லா குடும்ப

உட்கணங்களும் என்பது
(அ) A யின் அடுக்கு கணம்
(ஆ) A யின் தொடர் மீரப்பி
(இ) A பி்் பண்பியல் சார்பு
(ஈ) இவற்றில் எதுவுமில்லை

The family of all subsets of a given set A is called the \qquad
(a) power set of A
(b) relative complement of A
(c) characteristic function of A
(d) none
2. A என்ற கணத்தின் இரு வேறுப்பட்ட வெற்றில்லா உட்கணங்களின் குடும்பம்
(அ) A யின் பிரிப்பு
(ஆ) A யின் கார்ட்டீசியன் பெருக்கல்
(இ) கூட்டு குடும்பம்
(ஈ) இவற்றில் எதுவுமில்லை
A family of pairwise disjoint non empty subsets of a set A is called \qquad
(a) a partition of A
(b) cartesian product of A
(c) nested family
(d) none of these
3. எந்தவொரு $A \in \mathcal{F}(x)$
(அ) ${ }^{\alpha} A={ }^{\alpha} \cap A \quad$ (ஆ) ${ }^{\alpha} A={ }^{\alpha+} A$
(இ) ${ }^{\alpha} A=\bigcap_{\beta<\alpha}^{\beta} A$
(※) ${ }^{\alpha} A=\bigcup_{\beta<\alpha}^{\beta} A$
Page 2 Code No. : 30369 B

For $A \in \mathcal{F}(x)$
(a) ${ }^{\alpha} A={ }^{\alpha} \cap A$
(b) ${ }^{\alpha} A={ }^{\alpha+} A$
(c) ${ }^{\alpha} A=\bigcap_{\beta<\alpha}{ }^{\beta} A$
(d) ${ }^{\alpha} A=\bigcup_{\beta<\alpha}{ }^{\beta} A$
4. $f: X \rightarrow Y$ என்பது நிலையற்ற சார்பு எனில், எந்தவொரு $A_{i} \in \mathcal{F}(X), i \in I \quad$ மற்றும் $\quad B_{i} \in \mathcal{F}(X), B_{1} \leq B_{2}$ ஆக இருந்தால்
(அ) $f^{-1}\left(B_{1}\right) \subseteq f^{-1}\left(B_{2}\right)$
(ஆ) $f^{-1}\left(B_{1}\right) \supseteq f^{-1}\left(B_{2}\right)$
(இ) $f^{-1}\left(B_{1}\right)=f^{-1}\left(B_{2}\right)$
(ஈ) $\quad f^{-1}\left(B_{1}\right) \subset f^{-1}\left(B_{2}\right)$
Let $f: X \rightarrow Y$ be an arbitrary crisp function then for any $A_{i} \in \mathcal{F}(X), i \in I \quad$ and $\quad B_{i} \in \mathcal{F}(X)$ if $B_{1} \leq B_{2}$ then
(a) $f^{-1}\left(B_{1}\right) \subseteq f^{-1}\left(B_{2}\right)$
(b) $\quad f^{-1}\left(B_{1}\right) \supseteq f^{-1}\left(B_{2}\right)$
(c) $f^{-1}\left(B_{1}\right)=f^{-1}\left(B_{2}\right)$
(d) $\quad f^{-1}\left(B_{1}\right) \subset f^{-1}\left(B_{2}\right)$
5. எந்த ஒரு $A, B \in \mathbb{R}, A \leq B$
(அ) ${ }^{\alpha} A \leq{ }^{\alpha} B$
(ஆ) ${ }^{\alpha} A<{ }^{\alpha} B$
(இ) ${ }^{\alpha} A={ }^{\alpha} B$
(ஈ) இவற்றில் எதுவுமில்லை
For any $A, B \in \mathbb{R}, A \leq B$,
(a) ${ }^{\alpha} A \leq{ }^{\alpha} B$
(b) ${ }^{\alpha} A<{ }^{\alpha} B$
(c) ${ }^{\alpha} A={ }^{\alpha} B$
(d) None
6. ஒவ்வொரு மாறாமென் நிரப்பியும் கொண்டிருப்பது
(அ) அதிகபட்சம் ஒரு சமநிலை
(ஆ) குறைந்தபட்சம் ஒரு சமநிலை
(இ) ஓரு சமநிமல
(ஈ) இவற்றில் எதுவுமில்லை
Every fuzzy complement has
(a) atmost one equilibrium
(b) atleast one equilibrium
(c) equal to one equilibrium
(d) none

Page 4 Code No. : 30369 B
7. $W=\langle .3, .1, .2, .4\rangle$ எனில் $h_{w}(.6, .9, .2, .7)=$
(அ) . 54
(ஆ) 5.4
(இ) 45
(ஈ) 4.5
If $W=\langle .3, .1, .2, .4\rangle$ then $h_{w}(.6, .9, .2, .7)=$
(a) . 54
(b) 5.4
(c) 45
(d) 4.5
8. $A=[2,5]$ மற்றும் $B=[1,3]$ எனில் $A+B=$ (அ) $[3,8]$
(ஆ) $[5,6]$
(இ) $[7,4]$
(ஈ) $[2,15]$
If $A=[2,5], B=[1,3]$ then $A+B=$
(a) $[3,8]$
(b) $[5,6]$
(c) $[7,4]$
(d) $[2,15]$
9. எந்தவொரு வெக்டர் $X=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ ன் படி ——_———— என குறிக்கப்படுகிறது.
(அ) $D_{i}(X)$
(ஆ) $B_{i}(X)$
(இ) $Z_{i}(X)$
(ஈ) $\quad d_{i}(X)$
For each vector $X=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, the degree is denoted by
(a) $D_{i}(X)$
(b) $\quad d_{i}(X)$
(c) $\quad B_{i}(X)$
(d) $Z_{i}(X)$
10. $S\left(x_{i}, x_{j}\right)=$
(அ) $\frac{N\left(x_{i}, x_{j}\right)}{n} \quad$ (ஆ) $N\left(x_{i}, x_{j}\right) n$
(இ) $N\left(x_{i}, x_{j}\right) \quad$ (ஈ) $\frac{N\left(x_{i}, x_{j}\right)}{2 n}$
$S\left(x_{i}, x_{j}\right)=$
(a) $\frac{N\left(x_{i}, x_{j}\right)}{n}$
(b) $\quad N\left(x_{i}, x_{j}\right) n$
(c) $\quad N\left(x_{i}, x_{j}\right)$
(d) $\frac{N\left(x_{i}, x_{j}\right)}{2 n}$

Page 6 Code No. : 30369 B

PART B $-(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 words.
11. (அ) மாறாமென் கணத்திற்கான கருத்தை விவரி.

Describe the concept of fuzzy set.
Or
(ஆ) குவிவு கணத்தை வரையறு. குவிவு கணத்திற்கும் குவிவு அல்லாத கணத்திற்கும் எடுத்துக்காட்டு கொடு.

Define convex set. Give an example of convex set and non convex set.
12.

$$
\begin{aligned}
& \text { (அ) } A, B \in \mathcal{F}(X) \text { என்க. எந்தவொரு } \alpha, \beta \in[0,1], \\
& { }^{\alpha}(A \cup B)={ }^{\alpha} A \cup{ }^{\alpha} B \text { என நிறுவுக. }
\end{aligned}
$$

Let $A, B \in f(X)$ then prove that ${ }^{\alpha}(A \cup B)={ }^{\alpha} A \cup{ }^{\alpha} B$ for all $\alpha, \beta \in[0,1]$.

Or
(ஆ) $f: X \rightarrow Y$ என்பது நிலையற்ற சார்பு என்க. ஏதாவது $A \in \mathcal{F}(X)$ ஒரு நீட்டிப்பு கொள்கையால் மாறாமென் ஆக்கப்பட்ட f ஆனது $f(A)=\bigcup_{\alpha \in[0,1]} f\left({ }_{\alpha+} A\right)$ என்ற சமன்பாட்டை நிறைவு செய்யும் என நிறுவுக.

Page 7 Code No. : 30369 B

Let $f: X \rightarrow Y$ be a arbitrary function then prove that for any $A \in \mathcal{F}(X), f$ fuzzified by the extension principle satisfies the equation $f(A)=\bigcup_{\alpha \in[0,1]} f\left({ }_{\alpha+} A\right)$.
13. (அ) மாறாமென் நிரப்பியின் முதல் மற்றும் இரண்டாம் வகைப்படுத்தல் தேற்றத்றை எழுதுக,

State first and second characterization theorem of fuzzy complements.

Or
(ஆ) $i_{\min }(a, b) \leq i_{w}(a, b) \leq \min (a, b)$ நிருபி.
Prove that $i_{\text {min }}(a, b) \leq i_{w}(a, b) \leq \min (a, b)$.
14. (அ) மூடிய இடடவெளியில் நான்கு எண்கணித செயல்பாடு கொள்கைகளை எழுதுக.

Define four arithmetic operations in a closed intervals.

Or
Page 8 Code No. : 30369 B

$$
\begin{gathered}
\text { (ஆ) } A(x)=\left\{\begin{array}{cc}
0, & \text { for } x \leq-1 \text { and } x>3 \\
\frac{x+1}{2}, & \text { for }-1<x \leq 1 \\
\frac{3-x}{2}, & \text { for } 1<x \leq 3
\end{array} \quad\right. \text { மற்றும் } \\
B(x)=\left\{\begin{array}{cc}
0, & \text { for } x \leq 1 \text { and } x>5 \\
\frac{x-1}{2}, & \text { for } 1<x \leq 3 \\
\frac{5-x}{2} & \text { for } 3<x \leq 5
\end{array}\right. \text { எனில் } \\
\text { அவைகளூமடய } \alpha \text {-வெட்டி காண்க. } \\
\text { If } A(x)=\left\{\begin{array}{cc}
0, & \text { for } x \leq-1 \text { and } x>3 \\
\frac{x+1}{2}, & \text { for }-1<x \leq 1 \\
\frac{3-x}{2}, & \text { for } 1<x \leq 3
\end{array}\right. \text { and } \\
B(x)=\left\{\begin{array}{cc}
0, & \text { for } x \leq 1 \text { and } x>5 \\
\frac{x-1}{2}, & \text { for } 1<x \leq 3 \\
\frac{5-x}{2} & \text { for } 3<x \leq 5
\end{array}\right.
\end{gathered}
$$

find their α-cuts.
15. (அ) மாறாமென் நோிய செயல்திட்ட கணக்கை வரையறு.

Define fuzzy linear programming problem.

Or
Page 9 Code No. : 30369 B
(ஆ) கீழ்காணும் நேரிய செயல்திட்ட கணக்ணை வரைபட முறையில் தீர்க்க.

$$
\begin{aligned}
& \text { மீச்சிறிதாக்கு } \quad Z=x_{1}-2 x_{2} \quad \text { கட்டுப்பாடிகள் } \\
& 3 x_{1}-x_{2} \geq 1, \\
& 2 x_{1}+x_{2} \leq 6, \\
& 0 \leq x_{2} \leq 2, \\
& \quad 0 \leq x_{1}
\end{aligned}
$$

Solve the following by graphical method
$\operatorname{Min} Z=x_{1}-2 x_{2}$
subject to $3 x_{1}-x_{2} \geq 1$,
$2 x_{1}+x_{2} \leq 6$,
$0 \leq x_{2} \leq 2$, $0 \leq x_{1}$

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 600 words.
16. (அ) கன செயல்பாட்டின் ஏதாவது எட்டு கோட்பாட்மை எழுதுக.

Write any eight fundamental properties of crisp set operations.

Or

Page 10 Code No. : 30369 B
(ஆ) மாறாமென் கணம் A ஆனது $I R$ व் மேல் குவிவு எனில், எந்தவொரு $x_{1}, x_{2} \in \mathbb{R}$ மற்றும் $\lambda \in[0,1]$ $A\left(\lambda x+(1-\lambda) x_{2}\right) \geq \min \left[A\left(x_{1}\right), A\left(x_{2}\right)\right] \quad$ என நிறுவுக. இதன் மறுதமையையும் நிறுவுக.

Prove that a fuzzy set A on \mathbb{R} is convex iff $A\left(\lambda x+(1-\lambda) x_{2}\right) \geq \min \left[A\left(x_{1}\right), A\left(x_{2}\right)\right]$ for all $x_{1}, x_{2} \in \mathbb{R}$ and all $\lambda \in[0,1]$.
17. (அ) $f: X \rightarrow Y$ என்பது நிலையற்ற சார்பு என்க. ஏதாவது ஒரு $A \in \mathcal{F}(X)$, நீட்டிப்பு கொள்மகயால் மாறாமென் ஆக்கப்பட்ட f ஆனது ${ }^{\alpha+}[f(A)]=f\left({ }^{\alpha+} A\right)$ என்ற சமன்பாட்டை நிறறவு செய்யும் என நிறுவுக.

Let $f: X \rightarrow Y$ be an arbitrary crisp function. Then for any $A \in \mathcal{F}(X), f$ fuzzified by the extension principle satisfies the equation ${ }^{\alpha+}[f(A)]=f\left({ }^{\alpha+} A\right)$.

Or
(ஆ) $A, B \in \mathcal{F}(X)$, எனில் $\quad{ }^{\alpha}(A \cap B)={ }^{\alpha} A \cap{ }^{\alpha} B$ என்பதை நிருபி.

Let $A, B \in \mathcal{F}(X)$, then prove that ${ }^{\alpha}(A \cap B)={ }^{\alpha} A \cap{ }^{\alpha} B$.

Page 11 Code No. : 30369 B
18. (அ) $\langle i, u, c\rangle$ ல் i, u, c ஆகியன நடுத்தர நீக்க்பபட்ட விதி மற்றும் முரண்பாட்டு விதியை நிறறவு செய்யும் என நிறுவுக.
Prove that $\langle i, u, c\rangle$ satisfies the law of excluded middle and the law of contradiction.

Or
(ஆ) c என்பது தொடர்ச்சியான மாறாமென் நிரப்ப எனில் c ஆனது தனி சமநிறலயில் இருக்கும் என நிறுவுக.
Prove that if c is a continuous fuzzy complement then c has a unique equilibrium.
19. (அ) $\operatorname{MIN}(A, B)=\operatorname{MIN}(B, A)$ மற்றும்
$\operatorname{MAX}(A, B)=\operatorname{MAX}(B, A)$ என நிரூபி.
Prove that $\operatorname{MIN}(A, B)=\operatorname{MIN}(B, A)$ and $\operatorname{MAX}(A, B)=\operatorname{MAX}(B, A)$.

Or
(ஆ) மாறாமென் சமன்பாட்றை பற்றி விவாி.
Explain about fuzzy equations.
20. (அ) குழுவாக முடிவெடுத்தல் பற்றி விவாி.

Explain about multiperson decision making.
Or
(ஆ) தனியாக முடிவெடுத்தல் பற்றி விவாி.
Explain about individual decision making.

Page 12 Code No. : 30369 B
\qquad

Code No. : 30369 E Sub. Code : JMMA 6 A

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics -Main
Major Elective-III - FUZZY MATHEMATICS
(For those who joined in July 2016 only)
Time : Three hours Maximum : 75 marks
PART A - (10 $\times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. The family of all subsets of a given set A is called the -
(a) power set of A
(b) relative complement of A
(c) characteristic function of A
(d) none
2. A family of pairwise disjoint non empty subsets of a set A is called
(a) a partition of A
(b) cartesian product of A
(c) nested family
(d) none of these
3. For $A \in \mathcal{F}(x) \longrightarrow$.
(a) ${ }^{\alpha} A={ }^{\alpha} \cap A$
(b) ${ }^{\alpha} A={ }^{\alpha+} A$
(c) ${ }^{\alpha} A=\bigcap_{\beta<\alpha}^{\beta} A$
(d) ${ }^{\alpha} A=\bigcup_{\beta<\alpha}^{\beta} A$
4. Let $f: X \rightarrow Y$ be an arbitrary crisp function then for any $A_{i} \in \mathcal{F}(X), i \in I \quad$ and $\quad B_{i} \in \mathcal{F}(X)$ if $B_{1} \leq B_{2}$ then \longrightarrow.
(a) $f^{-1}\left(B_{1}\right) \subseteq f^{-1}\left(B_{2}\right)$
(b) $\quad f^{-1}\left(B_{1}\right) \supseteq f^{-1}\left(B_{2}\right)$
(c) $\quad f^{-1}\left(B_{1}\right)=f^{-1}\left(B_{2}\right)$
(d) $f^{-1}\left(B_{1}\right) \subset f^{-1}\left(B_{2}\right)$
5. For any $A, B \in \mathbb{R}, A \leq B, \square$.
(a) ${ }^{\alpha} A \leq{ }^{\alpha} B$
(b) ${ }^{\alpha} A<{ }^{\alpha} B$
(c) ${ }^{\alpha} A={ }^{\alpha} B$
(d) None

Page 2 Code No. : 30369 E
6. Every fuzzy complement has
(a) atmost one equilibrium
(b) atleast one equilibrium
(c) equal to one equilibrium
(d) none
7. If $W=\langle .3, .1, .2, .4\rangle$ then $h_{w}(.6, .9, .2, .7)=$
(a) . 54
(b) 5.4
(c) 45
(d) 4.5
8. If $A=[2,5], B=[1,3]$ then $A+B=$
(a) $[3,8]$
(b) $[5,6]$
(c) $[7,4]$
(d) $[2,15]$
9. For each vector $X=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, the degree is denoted by \qquad
(a) $\quad D_{i}(X)$
(b) $d_{i}(X)$
(c) $\quad B_{i}(X)$
(d) $\quad Z_{i}(X)$

Page 3 Code No. : 30369 E
10. $S\left(x_{i}, x_{j}\right)=$
(a) $\frac{N\left(x_{i}, x_{j}\right)}{n}$
(b) $\quad N\left(x_{i}, x_{j}\right) n$
(c) $\quad N\left(x_{i}, x_{j}\right)$
(d) $\frac{N\left(x_{i}, x_{j}\right)}{2 n}$

PART B $-(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 words.
11. (a) Describe the concept of fuzzy set.

Or

(b) Define convex set. Give an example of convex set and non convex set.
12. (a) Let $A, B \in \mathcal{F}(X)$, then prove that ${ }^{\alpha}(A \cup B)={ }^{\alpha} A \cup{ }^{\alpha} B$ for all $\alpha, \beta \in[0,1]$.

Or
(b) Let $f: X \rightarrow Y$ be a arbitrary function then prove that for any $A \in \mathcal{F}(X), f$ fuzzified by the extension principle satisfies the equation $f(A)=\bigcup_{\alpha \in[0,1]} f\left({ }_{\alpha+} A\right)$.

Page 4 Code No. : 30369 E
[P.T.O.]
13. (a) State first and second characterization theorem of fuzzy complements.

Or
(b) Prove that $i_{\text {min }}(a, b) \leq i_{w}(a, b) \leq \min (a, b)$.
14. (a) Define four arithmetic operations in a closed intervals.

Or
(b) If $A(x)=\left\{\begin{array}{cc}0, & \text { for } x \leq-1 \text { and } x>3 \\ \frac{x+1}{2}, & \text { for }-1<x \leq 1 \\ \frac{3-x}{2}, & \text { for } 1<x \leq 3\end{array}\right.$ and
$B(x)=\left\{\begin{array}{cc}0, & \text { for } x \leq 1 \text { and } x>5 \\ \frac{x-1}{2}, & \text { for } 1<x \leq 3 \\ \frac{5-x}{2} & \text { for } 3<x \leq 5\end{array}\right.$
find their α-cuts.
15. (a) Define fuzzy linear programming problem.

Or
(b) Solve the following by graphical method
$\operatorname{Min} Z=x_{1}-2 x_{2}$
subject to $3 x_{1}-x_{2} \geq 1$,
$2 x_{1}+x_{2} \leq 6$,
$0 \leq x_{2} \leq 2$, $0 \leq x_{1}$
Page 5 Code No. : 30369 E

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 600 words.
16. (a) Write any eight fundamental properties of crisp set operations.

Or
(b) Prove that a fuzzy set A on $I R$ is convex iff $A\left(\lambda x+(1-\lambda) x_{2}\right) \geq \min \left[A\left(x_{1}\right), A\left(x_{2}\right)\right]$ for all $x_{1}, x_{2} \leq I R$ and all $\lambda \in[0,1]$.
17. (a) Let $f: X \rightarrow Y$ be an arbitrary crisp function. Then for any $A \in \mathcal{F}(X), f$ fuzzified by the extension principle satisfies the equation ${ }^{\alpha+}[f(A)]=f\left({ }^{\alpha+} A\right)$.

Or
(b) Let $A, B \in \mathcal{F}(X)$, then prove that ${ }^{\alpha}(A \cap B)={ }^{\alpha} A \cap{ }^{\alpha} B$.
18. (a) Prove that $\langle i, u, c\rangle$ satisfies the law of excluded middle and the law of contradiction.

Or

(b) Prove that if c is a continuous fuzzy complement then c has a unique equilibrium.

Page 6 Code No. : 30369 E
19. (a) Prove that $\operatorname{MIN}(A, B)=\operatorname{MIN}(B, A)$ and $\operatorname{MAX}(A, B)=\operatorname{MAX}(B, A)$.

Or
(b) Explain about fuzzy equations.
20. (a) Explain about multiperson decision making.

Or
(b) Explain about individual decision making.

Page 7 Code No. : 30369 E

Reg. No. : \qquad

Code No. : 30370 E Sub. Code : JMMA 6 B

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester

Mathematics - Main
Major Elective - III : ASTRONOMY - II
(For those who joined in July 2016 only)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. In May 15 , The value of E
(a) $-14^{m} 21^{s}$
(b) $+3^{m} 45^{s}$
(c) $-6^{m} 22^{s}$
(d) $+16^{m} 22^{s}$
2. In $E=E_{1}+E_{2}$ where E_{1} is called the equation of time due to
(a) Eccentricity
(b) Obliquity
(c) Acutity
(d) None
3. Lunar month is about days
(a) $28 \frac{1}{2}$
(b) $29 \frac{1}{2}$
(c) $30 \frac{1}{2}$
(d) $31 \frac{1}{2}$
4. If elongation is 90°, then the moon is said to be
(a) Conjuction
(b) Opposition
(c) Quadratures
(d) None
5. The minor lunar ecliptic limit is
(a) $18^{\circ} 31^{\prime}$
(b) $15^{\circ} 24^{\prime}$
(c) $12^{\circ} 5^{\prime}$
(d) $9^{\circ} 30^{\prime}$
6. The minimum number of eclipses in a year is
(a) 2
(b) 7
(c) 3
(d) 5
7. The inner planets are
(a) Mars, Jupiter
(b) Mercury, Venus
(c) Saturn, Uranus
(d) Neptune, Pluto

Page 2 Code No. : 30370 E
8. The maximum elongation is $\theta=$
(a) $\sin ^{-1}\left(\frac{b}{a}\right)$
(b) $\cos ^{-1}\left(\frac{b}{a}\right)$
(c) $\tan ^{-1}\left(\frac{b}{a}\right)$
(d) $\cot ^{-1}\left(\frac{b}{a}\right)$
9. —— is the simplest form of sundial
(a) Horizontal
(b) Equatorial
(c) Zenith Sector
(d) None
10. \qquad is a simple instrument used by Greeks and ancient Hindus.
(a) Telescope
(b) Microscope
(c) Sundial
(d) Moondial

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Express in sideral time an interval of $16^{h} 18^{m} 24^{s}$ of mean time.

Or

Page 3 Code No. : 30370 E
(b) If \odot is the sun's longitude, prove that $\cot E_{2}=\cot 2 \odot+\operatorname{cosec} 2 \odot \cot ^{3} \frac{w}{2}$.
12. (a) Lunar liberations - Explain.

Or
(b) Find the horizontal parallax of moon by meridian observation.
13. (a) Prove that the maximum number of eclipses in a year is 7 .

Or
(b) Find the condition for the totality of lunar eclipse.
14. (a) Explain Bode's Law.

Or
(b) Find the relation between the sideral and synodic periods of a planet.
15. (a) What is a spectroscope. Explain it uses.

Or
(b) Derive the latitude of a place.

Page 4 Code No. : 30370 E
[P.T.O.]

PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b)
16. (a) If t_{1}, t_{2} are the hourly variations in the equations of time when the sun is at perigee and apogee show that $e=\frac{t_{1}-t_{2}}{t_{1}+t_{2}} \tan ^{2} \frac{w}{2}$, assuming that the equinoctial line to be perpendicular to the apse line of earth's orbit.

Or
(b) Prove that $E=-2 e \sin (l-k)+\tan ^{2} \frac{w}{2} \sin 2 l$ with usual notation.
17. (a) Discuss the different phases of moon.

Or
(b) Prove that the phase of the moon $=\frac{1-\cos \theta}{2}$.
18. (a) Prove that the length of the earth's shadow is 215 time the radius of the earth.

Or

(b) Derive the condition for the occurences of lunar and solar eclipses.

Page 5 Code No. : 30370 E
19. (a) Find the different phases of a planet in one synodic revolution.

> Or
(b) Prove that the phase of a planet $=\frac{1+\cos \theta}{2}$.
20. (a) Explain constellations.

Or
(b) Write short notes on
(i) Helio meter
(ii) Chronograph
(iii) Radio telescope.

Page 6 Code No. : 30370 E
\qquad

Code No. : 30371 E Sub. Code : JMMA 6 C/

 SEMA 6 CB.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics - Main
Major Elective - III - MATHEMATICAL MODELLING
(For those who joined in July 2016 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. The radio-active decay for white lead is
(a) 4 Years
(b) 8 Years
(c) 11 Years
(d) 22 Years
2. The time period for simple harmonic motion is
(a) $2 \pi \sqrt{\frac{a}{g}}$
(b) $2 \pi \sqrt{\frac{g}{a}}$
(c) $\frac{1}{2 \pi} \sqrt{\frac{a}{g}}$
(d) $\frac{1}{2 \pi} \sqrt{\frac{g}{a}}$
3. In SIS-Model, $\frac{d s}{d t}=$
(a) $\beta S I+\gamma I$
(b) $-\beta S I+\gamma I$
(c) $\beta S I-\gamma I$
(d) $-\beta S I-\gamma I$
4. In Domar Macro Model, $I(t)=$
(a) $Y(t)$
(b) $-Y(t)$
(c) $S(t)$
(d) $-S(t)$
5. The acceleration of the planet towards the sun is
(a) $\frac{G S}{r^{2}}$
(b) $\frac{G P}{r^{2}}$
(c) $\frac{\mu}{r^{2}}$
(d) $\frac{\mu}{r}$

Page 2 Code No. : 30371 E
6. If $e=1$, then the path is
(a) Parabola
(b) Hyperbola
(c) Ellipse
(d) None of these
7. In the inverse square law, central force $F=$
(a) $\frac{\mu}{r}$
(b) $\frac{\mu}{r^{2}}$
(c) $\frac{r}{\mu}$
(d) $\frac{r^{2}}{\mu}$
8. In Samuelson's Interaction Models, $Y(t)=$
(a) $C(t)$
(b) $I(t)$
(c) $C(t)+I(t)$
(d) $C(t)-I(t)$
9. A graph in which every pair of its vertices is joined by an edge is called
(a) Digraph
(b) Regular
(c) Complete
(d) Signed graph
10. The Euler's formula for a polygonal graph is
(a) $V+E+F=2$
(b) $V+E-F=2$
(c) $V-E+F=2$
(d) $V-E-F=2$

Page 3 Code No. : 30371 E

$$
\text { PART B }-(5 \times 5=25 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.
11. (a) Find the orthogonal trajectories of $\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1, \lambda-$ parameter.

Or
(b) Explain population growth Models.
12. (a) Explain the stability of Market Equilibrium.

Or
(b) Discuss Domar Macro Model.
13. (a) State and prove Kepler's third law of planetory motion.

Or
(b) Discuss the circular motion of satellites.
14. (a) Derive the Harrod Model.

Or
(b) Discuss the Samuelson's Interaction Models.
15. (a) Write a note on balance of signed graphs.

Or
(b) Define planar graphs and draw two non planar graphs.

Page 4 Code No. : 30371 E
[P.T.O.]

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b)
Each answer should not exceed 600 words.
16. (a) Discuss the motion of a rocket when gravity is taken into account.

Or

(b) Derive the equation of Simple Harmonic Motion.
17. (a) Derive Richardson's Model for Arms Race.

Or

(b) Prove that $S(t)=\frac{n(n+1)}{n+e^{(n+1)} \beta t} \quad$ and $I(t)=\frac{(n+1) e^{(n+1)} \beta t}{n+e^{(n+1)} \beta t} \quad$ for simple Epidemic Model.
18. (a) Prove that the radial and trasverse components of acceleration are $r^{\prime \prime}-r \theta^{12}$ and $\frac{1}{r} \frac{d}{d t}\left(r^{2} \theta^{\prime}\right)$.

Or
(b) Prove that $\frac{d^{2} u}{d \theta^{2}}+u=\frac{F}{h^{2} u^{2}}$.

Page 5 Code No. : 30371 E
19. (a) State and prove Hardy-Weinberg Law.
Or
(b) Define the Cobweb Model.
20. (a) Explain the application of Directed graph to detection of cliques.

Or
(b) Discuss the weighted digraphs and Markov chains.

Page 6 Code No. : 30371 E

Reg. No. :

\qquad

Code No. : 30578 B Sub. Code : SMMA 61

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics - Core
COMPLEX ANALYSIS

(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks

$$
\text { PART A }-(10 \times 1=10 \text { marks })
$$

Answer ALL questions.
Choose the correct answer :

1. $f(z)=z^{2}$ எனில் $u(x, y)$ ன் மதிப்பு
(அ) $x^{2}+y^{2}$
(ஆ) $x^{2}-y^{2}$
(இ) $2 x y$
(ஈ) $x+i y$
If $f(z)=z^{2}$, then the value of $u(x, y)$
(a) $x^{2}+y^{2}$
(b) $x^{2}-y^{2}$
(c) $2 x y$
(d) $x+i y$
2. $f(z)=z \operatorname{Im} z$ எனும் சார்பு எந்த புள்ளியில் வகையிடதக்கது
(அ) $z \quad$ (ஆ) 0
(இ) அனைத்து புள்ளிகள் (ஈ) ஏதுமில்லை
$f(z)=z \operatorname{Im} z$ is differentiable at \qquad .
(a) z
(b) 0
(c) all point
(d) none
3. $\quad f(z)=\frac{1}{z}$ மற்றும் C என்பது $|z|=r$ எனும் வட்டம் எனில் $\int_{C} f(z) d z$ व் மதிப்பு
(அ) 0
(ஆ) $2 \pi i$
(இ) $-2 \pi i$
(ஈ) $4 \pi i$
If $\int_{C} f(z) d z$ where $f(z)=\frac{1}{z}$ and C is the circle $|z|=r$, then $\int_{C} f(z) d z=$ \qquad .
(a) 0
(b) $2 \pi i$
(c) $-2 \pi i$
(d) $4 \pi i$

Page 2 Code No. : 30578 B
4. f என்பது ஒரு சாதாரண மூடிய வளைவின் அளைத்து புள்ளிகளிலும் பகுப்பு சார்பு எனில் $\int_{C} f(z) d z$ ன் மதிப்பு
(அ) $2 \pi i$
(ஆ) πi
(இ) 0
(ஈ) $-2 \pi i$

If f a function which is analytic at all points inside and on a simple closed curve C, then $\int_{C} f(z) d z=$
\qquad -.
(a) $2 \pi i$
(b) πi
(c) 0
(d) $-2 \pi i$
5. $1+\frac{z}{1!}+\frac{z^{2}}{2!}+\ldots \ldots+\frac{z^{n}}{n!}+\ldots=$?
(அ) $e^{-z} \quad$ (ஆ) e^{z}
(இ) $\frac{1}{z}$
(ஈ) $-\frac{1}{z}$
$1+\frac{z}{1!}+\frac{z^{2}}{2!}+\ldots \ldots+\frac{z^{n}}{n!}+\ldots=$?
(a) e^{-z}
(b) e^{z}
(c) $\frac{1}{z}$
(d) $-\frac{1}{z}$

Page 3 Code No. : 30578 B
6. $f(z)=\frac{z+1}{z^{2}-2 z}$ व் துருவங்கள்
(அ) 0,2
(ஆ) 0,1
(இ) $0,-1$
(ஈ) $0,-2$

The poles of $f(z)=\frac{z+1}{z^{2}-2 z}$
(a) 0,2
(b) 0,1
(c) $0,-1$
(d) $0,-2$
7. $f(z)=\frac{-2 i}{z^{2}+4 z+1}$ எனில் $\operatorname{Res}\{f(z) ;-2+\sqrt{3}\}=$?
(அ) $\frac{i}{\sqrt{3}}$
(ஆ) $\frac{-i}{\sqrt{3}}$
(இ) $\frac{2 \pi}{\sqrt{3}}$
(ஈ) $\frac{-2 \pi}{\sqrt{3}}$

If $f(z)=\frac{-2 i}{z^{2}+4 z+1}$, then $\operatorname{Res}\{f(z) ;-2+\sqrt{3}\}=$?
(a) $\frac{i}{\sqrt{3}}$
(b) $\frac{-i}{\sqrt{3}}$
(c) $\frac{2 \pi}{\sqrt{3}}$
(d) $\frac{-2 \pi}{\sqrt{3}}$

Page 4 Code No. : 30578 B
8. $\quad \int_{|z|=1} \frac{d z}{z^{2} e^{z}}$ व் மதிப்பு
(அ) $2 \pi i$
(ஆ) $-2 \pi i$
(இ) πi
(ஈ) $\quad-\pi i$

The value of $\int_{|z|=1} \frac{d z}{z^{2} e^{z}}$
(a) $2 \pi i$
(b) $-2 \pi i$
(c) πi
(d) $-\pi i$
9. $\quad w=\frac{1+z}{1-z}$ என் உருமாற்றத்தின் நிலைப் புள்ளிகள்
(அ) $i,-i$
(ஆ) $0, i$
(இ) $0,-i$
(ஈ) $i, 2 i$

The fixed points of the transformation $w=\frac{1+z}{1-z}$
(a) $i,-i$
(b) $0, i$
(c) $0,-i$
(d) $i, 2 i$

Page 5 Code No. : 30578 B
10. ஒரே ஒரு நிலைப்புள்ளியைக் கொண்ட (ஈறொருபடி) இரட்டை ஒரு படி உருமாற்றம் என்பது
(அ) பரவளளவு (ஆ) அதிபரவளைவு
(இ) நேர்கோடு
(ஈ) நீள்வட்டம்

A bilinear transformation with only one finite fixed point is called \qquad .
(a) parabolic
(b) hyperbolic
(c) straight line
(d) elliptic

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions.
11. (அ) $f(z)=z^{3}$ எனும் சார்பின் CR சமன்பாட்டை சாிபார்க்க.

Verify CR equations for the function $f(z)=z^{3}$.

Or

(ஆ) ஒரு பகுதியின் மட்டு மாறிலியைக் கொண்ட பகுப்பு சார்பு மாறிலி என நிறுவுக.

Prove that an analytic function in a region with constant modulus is constant.

Page 6 Code No. : 30578 B
12. (அ) $\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t$ என நிறுவுக.

Prove that $\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t$.
Or
(ஆ) C என்பது நேர்மறை சாா்ந்த வட்டம் $|z-i|=2$
எனில் $\int_{C} \frac{e^{z}}{z^{2}+4} d z$ ஐ மதிப்படுக.

Evaluate $\int_{C} \frac{e^{z}}{z^{2}+4} d z$ where C is positively oriented circle $|z-i|=2$.
13. (அ) $z=1$ ஐ பொருத்து, $f(z)=\frac{1}{z}$ என்பதின் டெய்லர் தொடர் விாிவாக்கத்தினைக் காண்க.

Find the Taylor's series expansion for $f(z)=\frac{1}{z}$ about $z=1$.

Or

Page 7 Code No. : 30578 B
(ஆ) $\frac{z e^{z}}{(z-1)^{3}}$ என்பதன் எச்சத்தத அதன் துருவங்களில் காண்க.

Find the residue of $\frac{z e^{z}}{(z-1)^{3}}$ at its pole.
14. (அ) C என்பது $|z|=2$ எனில் $\int_{C} \frac{d z}{2 z+3}$ ஐ மதிப்பிகுக.

Evaluate $\int_{C} \frac{d z}{2 z+3}$ where C is $|z|=2$.
Or
(ஆ) மதிப்பிடுக $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}$.
Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}$.
15. (அ) $z_{1}=2, z_{2}=i, z_{3}=-2$ என்ற புள்ளிகளின் $w_{1}=1, w_{2}=i, w_{3}=-1 \quad$ என்பன முறையே ஈறொருபடி உருமாற்றம் காண்க.

Find the bilinear transformation which maps the points $z_{1}=2, z_{2}=i, z_{3}=-2$, onto $w_{1}=1, w_{2}=i, w_{3}=-1$ respectively .

Or
Page 8 Code No. : 30578 B
(ஆ) $w=\frac{1}{z-2 i}$ என்பதன் நிலைப்புள்ளியைக் காண்க.
Find the fixed points of $w=\frac{1}{z-2 i}$.
PART C - (5 $\times 8=40$ marks $)$
Answer ALL questions.
16. (அ) $r>0$ மற்றும் $0<\theta<2 \pi$ எனில் $f(z)=\sqrt{r}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)$ என்பது வகையிடத்தக்கது என நிறுவுக. மேலும் $f^{\prime}(z)$ ஐ காண்க.

Show that $f(z)=\sqrt{r}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)$ where $r>0$ and $0<\theta<2 \pi$ is differentiable and find $f^{\prime}(z)$.

Or
(ஆ) $f(z)$ என்பது பகுப்பு சார்பு எனில் $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left|f(z)^{2}\right|^{2}=4\left|f^{\prime}(z)\right|^{2}$ எの நிறுவுக.

If $f(z)$ is analytic. Prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left|f(z)^{2}\right|^{2}=4\left|f^{\prime}(z)\right|^{2}$.

Page 9 Code No. : 30578 B
17. (அ) காஷியின் தேற்றத்தை எழுதி நிறுவுக.

State and prove Cauchy's theorem.
Or
(ஆ) மொரேருாவின் தேற்றத்தை எழுதி நிறுவுக.
State and prove Morera's theorem.
18. (அ) லாரண்ட் - ன் தேற்றத்தை எழுதி நிறுவுக.

State and prove Laurent's theorem.
Or
(ஆ) காஷியின் எச்சத் தேற்றத்றை எழுதி நிறுவுக.
State and prove Cauchy's residue theorem.
19. (அ) மதிப்பிடுக $\int_{0}^{2 \pi} \frac{d \theta}{13+5 \sin \theta}$.

Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{13+5 \sin \theta}$.
Or
(ஆ) நிறுவுக $\int_{0}^{\infty} \frac{\cos x}{1+n^{2}} d x=\frac{\pi}{2 e}$.
Prove that $\int_{0}^{\infty} \frac{\cos x}{1+n^{2}} d x=\frac{\pi}{2 e}$.
Page 10 Code No. : 30578 B
20. (அ) பின்வருவன பொது வடிவ கோப்புகள் எனில் அதன் புள்ளிகளைக் காண்க. மேலும் அவதிப் புள்ளிகள் இருப்பின் அதனையும் காண்க.
(i) $w=z+\frac{1}{z}$
(ii) $w=e^{z}$.

Find the points where the following mappings are conformal. Also find the critical points of any.
(i) $w=z+\frac{1}{z}$
(ii) $\quad w=e^{z}$.

Or

(ஆ) எந்த ஓரு ஈறொருபடி உருமாற்றமும் குறுக்கு விகிதத்தைக் கொடுக்கும் என நிறுவுக.

Prove that any bilinear transformation preserves cross ratio.

Page 11 Code No. : 30578 B
\qquad

Code No. : 30578 E Sub. Code : SMMA 61

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics - Core
COMPLEX ANALYSIS

(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. If $f(z)=z^{2}$, then the value of $u(x, y)$
(a) $x^{2}+y^{2}$
(b) $x^{2}-y^{2}$
(c) $2 x y$
(d) $x+i y$
2. $f(z)=z \operatorname{Im} z$ is differentiable at \qquad .
(a) z
(b) 0
(c) all point
(d) none
3. If $\int_{C} f(z) d z$ where $f(z)=\frac{1}{z}$ and C is the circle $|z|=r$, then $\int_{C} f(z) d z=$ \qquad -
(a) 0
(b) $2 \pi i$
(c) $-2 \pi i$
(d) $4 \pi i$
4. If f a function which is analytic at all points inside and on a simple closed curve C, then $\int_{C} f(z) d z=$
\qquad
(a) $2 \pi i$
(b) πi
(c) 0
(d) $-2 \pi i$
5. $1+\frac{z}{1!}+\frac{z^{2}}{2!}+\ldots \ldots+\frac{z^{n}}{n!}+\ldots=$?
(a) e^{-z}
(b) e^{z}
(c) $\frac{1}{z}$
(d) $-\frac{1}{z}$
6. The poles of $f(z)=\frac{z+1}{z^{2}-2 z}$
(a) 0,2
(b) 0,1
(c) $0,-1$
(d) $0,-2$

Page 2 Code No. : 30578 E
7. If $f(z)=\frac{-2 i}{z^{2}+4 z+1}$, then $\operatorname{Res}\{f(z) ;-2+\sqrt{3}\}=$?
(a) $\frac{i}{\sqrt{3}}$
(b) $\frac{-i}{\sqrt{3}}$
(c) $\frac{2 \pi}{\sqrt{3}}$
(d) $\frac{-2 \pi}{\sqrt{3}}$
8. The value of $\int_{|z|=1} \frac{d z}{z^{2} e^{z}}$
(a) $2 \pi i$
(b) $-2 \pi i$
(c) πi
(d) $-\pi i$
9. The fixed points of the transformation $w=\frac{1+z}{1-z}$
(a) $i,-i$
(b) $0, i$
(c) $0,-i$
(d) $i, 2 i$
10. A bilinear transformation with only one finite fixed point is called \qquad .
(a) parabolic
(b) hyperbolic
(c) straight line
(d) elliptic

Page 3 Code No. : 30578 E

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions.
11. (a) Verify CR equations for the function $f(z)=z^{3}$.

Or

(b) Prove that an analytic function in a region with constant modulus is constant.
12. (a) Prove that $\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t$.

Or
(b) Evaluate $\int_{C} \frac{e^{z}}{z^{2}+4} d z$ where C is positively oriented circle $|z-i|=2$.
13. (a) Find the Taylor's series expansion for $f(z)=\frac{1}{z}$ about $z=1$.

Or
(b) Find the residue of $\frac{z e^{z}}{(z-1)^{3}}$ at its pole.

Page 4 Code No. : 30578 E
[P.T.O.]
14. (a) Evaluate $\int_{C} \frac{d z}{2 z+3}$ where C is $|z|=2$.

Or
(b) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}$.
15. (a) Find the bilinear transformation which maps the points $z_{1}=2, z_{2}=i, z_{3}=-2$, onto $w_{1}=1, w_{2}=i, w_{3}=-1$ respectively.

Or
(b) Find the fixed points of $w=\frac{1}{z-2 i}$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions.
16. (a) Show that $f(z)=\sqrt{r}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)$ where $r>0$ and $0<\theta<2 \pi$ is differentiable and find $f^{\prime}(z)$.

Or
(a) If $f(z)$ is analytic. Prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left|f(z)^{2}\right|^{2}=4\left|f^{\prime}(z)\right|^{2}$.

Page 5 Code No. : 30578 E
17. (a) State and prove Cauchy's theorem.

Or
(b) State and prove Morera's theorem.
18. (a) State and prove Laurent's theorem.

Or
(b) State and prove Cauchy's residue theorem.
19. (a) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{13+5 \sin \theta}$.

Or
(b) Prove that $\int_{0}^{\infty} \frac{\cos x}{1+n^{2}} d x=\frac{\pi}{2 e}$.
20. (a) Find the points where the following mappings are conformal. Also find the critical points of any.
(i) $w=z+\frac{1}{z}$
(ii) $w=e^{z}$.

Or
(b) Prove that any bilinear transformation preserves cross ratio.

Page 6 Code No. : 30578 E

Reg. No.

Code No. : 30579 B Sub. Code : SMMA 62

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics - Core

NUMBER THEORY

(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer

1. $41+42+\ldots+78$ ன் மதிப்பு
(அ) 3081 (ஆ) 2261
(இ) 2061 (ஈ) 1661
The sum of $41+42+\ldots+78$ is
(a) 3081
(b) 2261
(c) 2061
(d) 1661
2. n ஓரு மிகை முழு எண் மேலும் $r \leq n$ ஓரு மிகை முழு எண் எனில் $n c_{r}+n c_{r-1}$ ன் மதிப்பு
(அ) $n+1 c_{r} \quad$ (ஆ) $n+1 c_{r+1}$
(இ) $n c_{r}$
(ஈ) $n c_{r+1}$
If n is a given positive integer, and $r \leq n$ is also a positive integer, than the value of $n c_{r}+n c_{r-1}$
(a) $n+1 c_{r}$
(b) $n+1 c_{r+1}$
(c) $n c_{r}$
(d) $n c_{r+1}$
3. மீ.ดொ.வ $(-8,-36)=$
(அ) -8
(ஆ) -4
(இ) 4
(ஈ) 8
$\operatorname{gcd}(-8,-36)=$
(a) -8
(b) -4
(c) 4
(d) 8
4. K பூசியமல்லாத முழு எண் எனில் மீ.பொ.வ. $(k a, k b)=$?
(அ) K மீ.பொ.வ $(a, b) \quad$ (ஆ) $|K|$ மீ.பொ.வ (a, b)
(இ) மீ.பொ.வ (a, b)
(ஈ) k^{2} மீ.பொ.வ (a, b)

Page 2 Code No. : 30579 B

For any interger $k \neq 0, \operatorname{gcd}(k a, k b)=$?
(a) $K \cdot \operatorname{gcd}(a, b)$
(b) $\quad|K| \operatorname{gcd}(a, b)$
(c) $\operatorname{gcd}(a, b)$
(d) $k^{2} \operatorname{gcd}(a, b)$
5. எண் 30 க்கும் குறைவான உள்ள ஒற்றறப்படை பகா எண்களின் எண்ணிக்கையானது.
(அ) 8
(ஆ) 9
(இ) 10
(ஈ) 11

The number of odd prime less than 30 is
(a) 8
(b) 9
(c) 10
(d) 11
6. வகுத்தல் செய்வழிப்படி, ஒவ்வொரு இரட்டைப்படை மிகை எண்ணையும் தனிச்சிறப்புப்பட என எழுத முடியும்.
(அ) $4 n+1$
(ஆ) $4 n+3$
(இ) $4 n(o r) 4 n+2$
(ஈ) இவையேதும் இல்லை
Page 3 Code No. : 30579 B

According to division algorithm, every positive even integer can be uniquely written as
(a) $4 n+1$
(b) $4 n+3$
(c) $4 n($ or $) 4 n+2$
(d) None of these
7. $6 x \equiv \quad(\bmod 21)$ என்ற முற்றொருமையானது தீர்வுகளைக் கொண்டதாகும்.
(அ) 3
(ஆ) 2
(இ) 6
(ஈ) 8

The congruence $6 x \equiv$ \qquad $(\bmod 21)$ has solutions.
(a) 3
(b) 2
(c) 6
(d) 8
8. உலகத்தர புதிதாக எண்ணின் பத்தாம் இலக்கம் $a_{10}=$
(அ) $\sum_{k=1}^{9} K a_{k}(\bmod 11)$
(ஆ) $\sum_{k=1}^{9} a_{k}(\bmod 11)$
(இ) $\sum_{k=1}^{9}(K+1) a_{k}(\bmod 11)$
(ஈ) $\sum_{k=1}^{10} K a_{k}(\bmod 11)$

Page 4 Code No. : 30579 B

In ISBN, the tenth digit a_{10} is given by
(a) $\quad \sum_{k=1}^{9} K a_{k}(\bmod 11)$
(b) $\quad \sum_{k=1}^{9} a_{k}(\bmod 11)$
(c) $\quad \sum_{k=1}^{9}(K+1) a_{k}(\bmod 11)$
(d) $\sum_{k=1}^{10} K a_{k}(\bmod 11)$
9. $\quad \phi(225)$ ன் மதிப்பு
(அ) 15
(ஆ) 45
(இ) 75
(ஈ) 120
The value of $\phi(225)$ is
(a) 15
(b) 45
(c) 75
(d) 120

Page 5 Code No. : 30579 B
10. P ஒரு ஒற்றறப்படை பகா எண் எனில் $1^{p-1}+2^{p-1}+\ldots+(p-1)^{p-1} \quad$ ஐ $\quad P$ வகுக்கும் போது கிடைக்கும் மீதி யாது?
(அ) 1
(ஆ) 2
(இ) $\frac{p-1}{2}$
(ஈ) $\quad p-1$
If P is an odd prime find the remainder when $1^{p-1}+2^{p-1}+\ldots+(p-1)^{p-1}$ is divided by P.
(a) 1
(b) 2
(c) $\frac{p-1}{2}$
(d) $p-1$

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) (i) முதல் n இயல் எண்களின் கூடுதல் ஒரு முக்கோண இயல் எண் ஆகும் என நிரூபி.
(ii) அடுத்தடுத்த இரண்டு முக்கோண எண்களின் கூடுதல் ஒரு முழுமையான வர்க்கம் என நிரூபி.
(i) Prove that the sum of first n natural numbers is a triangular number.
(ii) The sum of any 2 consecutive triangular numbers is a perfect square.

> Or

Page 6 Code No. : 30579 B
(ஆ) அனைத்து $n \geq 2$ க்கும்

$$
\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\ldots+\binom{n}{2}+\binom{n+1}{3} \quad \text { व் மதிப்பு }
$$ காண்க.

For $n \geq 2$, Find the value of $\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\ldots+\binom{n}{2}+\binom{n+1}{3}$.
12. (அ) a, b, c ஆகியன பூச்சியமற்ற ஏதேனும் இரண்டு முழுக்களைக் கொண்ட முழு எண்கள் $d=$ மீ.பொ.வ. (a, b, c)
$d=$ மீ.பொ.வ.(மீ.பொ.வ.) $(a, b), c)$
$=$ மீ.பொ.வ. $(a, b, c)=(a$, மீ.பொ.வ. $(b, c))$ என நிரூபிக்க.
Let a, b, c be integers no two of which are zero. Show that $d=\operatorname{gcd}(a, b, c)$
$d=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$
$=\operatorname{gcd}(a, b, c)=(a, \operatorname{gcd}(b, c))$
Or
(ஆ) மீ.பொ.வ. (a, b) மீ.சி.ம. $(a, b)=a b$ என நிரூபி.
Prove that $\operatorname{gcd}(a, b) .1 \mathrm{~cm}(a, b)=a b \quad$ for positive integers.

Page 7 Code No. : 30579 B
13. (அ) என்ற எண்களின் பகா காரணியை கண்டுபிடி.
(i) 10140
(ii) 36000

Find the prime factorization of
(i) 10140
(ii) 36000

Or

(ஆ) n-வது பகா எண் P_{n} எனில் $P_{n} \leq 2^{2^{n-1}}$ என நிரூபி.
If P_{n} is the $n^{\text {th }}$ prime number, then prove that $P_{n} \leq 2^{2^{n-1}}$.
14. (அ) $41^{65} \equiv 6$ (மட்டு 7) ன் மதிப்பபக் காண்க.

Calculate $41^{65} \equiv 6(\bmod 7)$.
Or
(ஆ) $18 x \equiv 30$ (மட்டு 42) என்ற நேரியல் முழு ஒப்புமை சமன்பாட்டடத் தீர்க்கவும்.

Solve the linear congruence $18 x \equiv 30(\bmod 42)$

Page 8 Code No. : 30579 B
15. (அ) பெர்மாட்டின் மறுதலலயை ஒரு எடுத்துக்காட்டு

கொடுத்து விளக்குக.
Explain about the converse of the Fermat's theorem by giving an example.

Or
(ஆ) P ஒரு பகா எண் எனில், எந்தவொரு முழு எண் a க்கும் $\quad P \mid a^{p}+(p-1)!\quad a \quad$ மற்றும் $P(p-1)!a^{p}+a$ என நிரூபி.

If P is a prime, prove that for any integer $a, P \mid a^{p}+(p-1)!$ and $P \mid(p-1)!a^{p}+a$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) ஈருறுப்பு தேற்றத்தை நிர்மாணிக்கவும்.

Establish the binomial theorem.
Or
(ஆ) (i) $1.2+2.3+3.4+\cdots+n(n+1)=$

$$
\frac{n(n+1)(n+2)}{3}, \forall n \geq 1
$$

என நிரூபி.
(ii) தொகுத்தறி முறை (முடிவுறு) யின் இரண்டாம் கொள்கையை எழுதி நிரூபிக்க.

Page 9 Code No. : 30579 B
(i) Prove that
$1.2+2.3+3.4+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}, \forall n \geq 1$.
(ii) State and prove the second principle of finite induction.
17. (அ) யூக்ளிடியன் படிமுறைக் கூறி நிறுவுக.

State and prove Euclidean Algorithm.
Or
(ஆ) (i) a / b மற்றும் a / c எனில் $a \mid(b x+c y), x, y \in Z$ என நிரூபி.
(ii) வகுத்தல் கணக்கு முறையை எழுதி நிரூபிக்க.
(i) If a / b and a / c, prove that $a \mid(b x+c y), x, y \in Z$.
(ii) State and prove Division Algorithm.
18. (அ) எண்ணியலின் அடிப்படைத் தேற்றத்தைக் கூறி நிறுவுக.

State and prove fundamental theorem of arithmetic.

Or

Page 10 Code No. : 30579 B
(ஆ) (i) பகா எண்கள் எண்ணிலடங்காதவை எனக் காட்டுக.
(ii) $\sqrt{2}$ ஓரு கூறுபடா எண் என நிரூபி.
(i) Show that there are infinite number of primes.
(ii) Show that the number $\sqrt{2}$ is irrational
19. (அ) (i) சைனீஸ் மீதித் தேற்றத்றைக் கூறி நிறுவுக.
(ii) தீர்க்க, $x \equiv 2$ (மட்டு 3), $x \equiv 3$ (மட்டு 5), $x \equiv 2$ (மட்டு 7).
(i) State and prove Chinese Remainder theorem.
(ii) Solve
$x \equiv 2(\bmod 3), x \equiv 3(\bmod 5), x \equiv 2(\bmod 7)$.
Or
(ஆ) (i) $a \equiv b$ (மட்டு m) மேலும் $f(x)$ என்பது ஒரு பல்லுறுப்புக் கோவை எனில் $f(a) \equiv f(b)$ (மட்டு m) என நிரூபி.
(ii) முற்றொருமையைப் பயன்படித்தி பெர்மாட்ஸ் எண் $F_{5}=2^{32}+1$ ஓரு பகா எண் அல்ல என நிரூபி.
(i) If $a \equiv b(\bmod m)$ and $f(x)$ is a polynomial coefficient, show that $f(a) \equiv f(b)(\bmod m)$.
(ii) Using congruences prove that the Fermat's number $F_{5}=2^{32}+1$ is not a prime.
20. (அ) $a^{21} \equiv a($ (மட்டு 15) எனக் காட்டுக.

Show that $a^{21} \equiv a(\bmod 15)$.
Or
(ஆ) வில்சன் தேற்றத்தைக் கூறி நிறுவுக.
State and prove Wilson's theorem.

Page 12 Code No. : 30579 B

Reg. No. :

Code No. : 30579 E Sub. Code : SMMA 62

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics - Core

NUMBER THEORY

(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer

1. The sum of $41+42+\ldots+78$ is
(a) 3081
(b) 2261
(c) 2061
(d) 1661
2. If n is a given positive integer, and $r \leq n$ is also a positive integer, than the value of $n c_{r}+n c_{r-1}$
(a) $n+1 c_{r}$
(b) $n+1 c_{r+1}$
(c) $n c_{r}$
(d) $n c_{r+1}$
3. $\operatorname{gcd}(-8,-36)=\square$
(a) -8
(b) -4
(c) 4
(d) 8
4. For any interger $k \neq 0, \operatorname{gcd}(k a, k b)=$?
(a) $K \cdot \operatorname{gcd}(a, b)$
(b) $\quad|K| \operatorname{gcd}(a, b)$
(c) $\operatorname{gcd}(a, b)$
(d) $\quad k^{2} \operatorname{gcd}(a, b)$
5. The number of odd prime less than 30 is
(a) 8
(b) 9
(c) 10
(d) 11
6. According to division algorithm, every positive even integer can be uniquely written as
(a) $4 n+1$
(b) $4 n+3$
(c) $4 n($ or $) 4 n+2$
(d) None of these
7. The congruence $6 x \equiv$ \qquad $(\bmod 21)$ has solutions.
(a) 3
(b) 2
(c) 6
(d) 8

Page 2 Code No. : 30579 E
8. In ISBN, the tenth digit a_{10} is given by
(a) $\sum_{k=1}^{9} K a_{k}(\bmod 11)$
(b) $\quad \sum_{k=1}^{9} a_{k}(\bmod 11)$
(c) $\quad \sum_{k=1}^{9}(K+1) a_{k}(\bmod 11)$
(d) $\sum_{k=1}^{10} K a_{k}(\bmod 11)$
9. The value of $\phi(225)$ is
(a) 15
(b) 45
(c) 75
(d) 120
10. If P is an odd prime find the remainder when $1^{p-1}+2^{p-1}+\ldots+(p-1)^{p-1}$ is divided by P.
(a) 1
(b) 2
(c) $\frac{p-1}{2}$
(d) $p-1$

Page 3 Code No. : 30579 E

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) (i) Prove that the sum of first n natural numbers is a triangular number.
(ii) The sum of any 2 consecutive triangular numbers is a perfect square.

Or
(b) For $n \geq 2$, Find the value of $\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\ldots+\binom{n}{2}+\binom{n+1}{3}$.
12. (a) Let a, b, c be integers no two of which are zero. Show that $d=\operatorname{gcd}(a, b, c)$

$$
\begin{aligned}
& d=\operatorname{gcd}(\operatorname{gcd}(a, b), c) \\
& =\operatorname{gcd}(a, b, c)=(a, \operatorname{gcd}(b, c)) \\
& \text { Or }
\end{aligned}
$$

(b) Prove that $\operatorname{gcd}(a, b) \cdot 1 \mathrm{~cm}(a, b)=a b$ for positive integers.
13. (a) Find the prime factorization of
(i) 10140
(ii) 36000

Or
(b) If P_{n} is the $n^{\text {th }}$ prime number, then prove that $P_{n} \leq 2^{2^{n-1}}$.

Page 4 Code No. : 30579 E
[P.T.O.]
14. (a) Calculate $41^{65} \equiv 6(\bmod 7)$.
Or
(b) Solve the linear congruence $18 x \equiv 30(\bmod 42)$
15. (a) Explain about the converse of the Fermat's theorem by giving an example.

Or

(b) If P is a prime, prove that for any integer $a, P \mid a^{p}+(p-1)!$ and $P \mid(p-1)!a^{p}+a$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Establish the binomial theorem.
Or
(b) (i) Prove that
$1.2+2.3+3.4+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}, \forall n \geq 1$.
(ii) State and prove the second principle of finite induction.
17. (a) State and prove Euclidean Algorithm.

Or
(b) (i) If a / b and a / c, prove that $a \mid(b x+c y), x, y \in Z$.
(ii) State and prove Division Algorithm.
18. (a) State and prove fundamental theorem of arithmetic.

Or
(b) (i) Show that there are infinite number of primes.
(ii) Show that the number $\sqrt{2}$ is irrational
19. (a) (i) State and prove Chinese Remainder theorem.
(ii) Solve

$$
x \equiv 2(\bmod 3), x \equiv 3(\bmod 5), x \equiv 2(\bmod 7)
$$

Or
(b) (i) If $a \equiv b(\bmod m)$ and $f(x)$ is a polynomial coefficient, show that $f(a) \equiv f(b)(\bmod m)$.
(ii) Using congruences prove that the Fermat's number $F_{5}=2^{32}+1$ is not a prime.
20. (a) Show that $a^{21} \equiv a(\bmod 15)$.

Or
(b) State and prove Wilson's theorem.

Page 6 Code No. : 30579 E

Reg. No. :

\qquad

Code No. : 30580 B Sub. Code : SMMA 63

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics - Core
GRAPH THEORY
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. $\quad K_{3,4}$-இல் உள்ள கோடுகளின் எண்ணிக்கை
(அ) 7 (ஆ) 12
(இ) 3
(ஈ) 4
The number of edges in $K_{3,4}$ is
(a) 7
(b) 12
(c) 3
(d) 4
2. ஒரு ஓழுங்கு வரைபில் $\delta=8$ எனில் $\Delta=$
(அ) 8
(ஆ) 7
(இ) 9
(ஈ) 16

If $\delta=8$ for a regular graph then $\Delta=$
(a) 8
(b) 7
(c) 9
(d) 16
3. வரைவு G-யின் பாலம் e எனில் $w(G-e)=$ (அ) $w(G)-1 \quad$ (ஆ) $w(G)$
(இ) $w(G)+1$
(ஈ) $2 w(G)$
If e is a bridge of graph G then $w(G-e)=$
(a) $\quad w(G)-1$
(b) $w(G)$
(c) $\quad w(G)+1$
(d) $2 w(G)$
4. $\quad C_{4}$-ன் வெட்டுப் புள்ளிகளின் எண்ணிக்கை
(அ) 1
(ஆ) 0
(இ) 3
(ஈ) 2

Number of cut points of C_{4} is
(a) 1
(b) 0
(c) 3
(d) 2

Page 2 Code No. : 30580 B
5. வழக்கமான குறியீட்டின் படி, $\quad|V|-|E|+|F|=$
(அ) 2
(ஆ) 1
(இ) 0
(ஈ) 3

With usual notations, $|V|-|E|+|F|=\square$.
(a) 2
(b) 1
(c) 0
(d) 3
6. T ஒரு (p, q) மரம் எனில், கீழ்கண்டவற்றுள் எது தவறு?
(அ) T ஒரு சுழலற்ற தொடுத்த வரைபு
(ஆ) T ஒரு தொடுத்த ஒழுங்கு வரரபு
(இ) T ஒரு தொடுத்த வரைபு, $q=p-1$
(ஈ) T ஓரு சுழலற்ற வரைபு, $q=p-1$
If T is a (p, q) tree then which statement is false?
(a) T is a connected acyclic graph
(b) T is a connected regular graph
(c) T is a connected graph, $q=p-1$
(d) T is an acyclic graph, $q=p-1$
7. கீழ்கண்டவற்றுள் எது ஒரு தளவரைபு?
(அ) K_{7}
(ஆ) K_{6}
(இ) K_{5}
(ஈ) K_{4}

Page 3 Code No. : 30580 B

Which of the following is a planar graph?
(a) K_{7}
(b) $\quad K_{6}$
(c) K_{5}
(d) $\quad K_{4}$
8. \bar{K}_{5}-ன் வண்ண எண்
(அ) 2
(ஆ) 3
(இ) 5
(ஈ) 1

Chromatic number of \bar{K}_{5} is \longrightarrow.
(a) 2
(b) 3
(c) 5
(d) 1
9. $f(G, \lambda)=\lambda^{5}-7 \lambda^{4}+19 \lambda^{3}-23 \lambda^{2}+10 \lambda$ எனில் G-யில் உள்ள புள்ளிகளின் எண்ணிக்கை
(அ) 4
(ஆ) 5
(இ) 7
(ஈ) 10
If $f(G, \lambda)=\lambda^{5}-7 \lambda^{4}+19 \lambda^{3}-23 \lambda^{2}+10 \lambda$ then the number of points in G is
(a) 4
(b) 5
(c) 7
(d) 10

Page 4 Code No. : 30580 B
10. கீழ்காணும் திசசவரைபில், 2-ன் உட்படி எது?

(அ) 1
(இ) 3
(ஆ) 2

What is the in-degree of 2 in the following diagraph?

(a) 1
(b) 2
(c) 3
(d) 4

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) எந்தவொரு தன்நிரப்பு வரைபிற்கும் $4 n$ அல்லது $4 n+1$ புள்ளிகள் உள்ளன என நிரூபி.
Prove that any self complementary graph has $4 n$ or $4 n+1$ points.

Or
Page 5 Code No. : 30580 B
(ஆ) G என்பது $\left(V_{1}, V_{2}\right)$ என இரு பிாிவுகளைக் கொண்ட ஒரு இருகூறு வரைபு மற்றும் G ஒரு $k-$ ஒழுங்கு வரைபு, $k>0$ எனில் $\left|V_{1}\right|=\left|V_{2}\right|$ என நிரூபி.

Let G be a k-regular bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$ and $k>0$. Prove that $\left|V_{1}\right|=\left|V_{2}\right|$.
12. (அ) $P=(4,4,4,2,2,2)$ ஒரு வரைபு தொடரா? ஆம் எனில் p-க்கான ஒரு வரைபை வரைக.

Is $P=(4,4,4,2,2,2)$ a graphic sequence? If yes then draw a graph for p.

Or
(ஆ) G என்ற வரைபில் $\delta \geq k$ எனில் G-க்கு k-நீளமுள்ள ஒரு பாதை உண்டு என நிரூபி.
In a graph G, if $\delta \geq k$ then show that G has a path of length k.
13. (அ) ஒவ்வொரு மரத்தின் மையத்திலும் ஒரு புள்ளியோ அல்லது இரு அண்டை புள்ளிகளோ இருக்கும் என நிரூபி.

Prove that every tree has a centre consisting of either one point or two adjacent points.

Or
(ஆ) $C(G)$ நன்கு வரையறுக்கப்பட்டது என நிரூபி.
Prove that $C(G)$ is well-defined.

Page 6 Code No. : 30580 B
14. (அ) K_{5}-ஒரு தள வரைபு அல்ல என நிரூபி.

Prove that K_{5} is non-planar.
Or
(ஆ) தனித்த முறையில் n - வண்ணப்படுத்தக்கூடிய ஒவ்வொரு வரைபும் $(n-1)$ தொடர் வரைபு எனக் காட்டு.

Show that every uniquely n-colourable graph is ($n-1$) connected.
15. (அ) இரு திரை வரைபுகள் சம ஒப்புமையுடையது எனில் ஒத்த புள்ளிகள் ஒரே படி ஜோடி கொண்டிருக்கும் என நிரூபி.

If two digraphs are isomorphic then prove that corresponding points have the same degree pair.

Or
(ஆ) $f\left(k_{n}, \lambda\right)=\lambda(\lambda-1)(\lambda-2) \ldots .(\lambda-n+1) \quad$ என நிரூபி.

Prove that
$f\left(k_{n}, \lambda\right)=\lambda(\lambda-1)(\lambda-2) \ldots(\lambda-n+1)$.
Page 7 Code No. : 30580 B

PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) G என்பது முக்கோணங்கள் இல்லாத (p, q) வரைபு எனில் $q \leq\left[\frac{p^{2}}{4}\right]$ என நிரூபி.

If G is a (p, q) graph without triangles then prove that $q \leq\left[\frac{p^{2}}{4}\right]$.

Or
(ஆ) (i) ஒவ்வொரு வரைபும் வெட்டும் வரரபு எனக் காட்டுக.
(ii) G என்பது ஒரு (p, q) வரரபு என்க. $L(G)$ ஓரு $\left(q, q_{L}\right)$ வரரபாகும் என நிறுவுக. இங்கு $q_{L}=\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}^{2}\right)-q$.
(i) Show that every graph is an intersection graph.
(ii) Let G be a (p, q) graph. Prove that $L(G)$ is a $\left(q, q_{L}\right)$ graph where $q_{L}=\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}^{2}\right)-q$.

Page 8 Code No. : 30580 B
17. (அ) குறைந்தது இருபுள்ளிகள் கொண்ட ஓரு வரைபு G இருகூறு வரைபாக இருந்தால், இருந்தால் மட்டுமே அதன் அனைத்து சுற்றுகளும் இரட்டைப் படை நீளத்தில் இருக்கும் எனக் காட்டுக.

Show that a graph G with atleast two points is bipartite iff all its cycles are of even length.

Or
(ஆ) (i) ஒரு வரைபின் புள்ளி தொடர்ச்சி, கோடு தொடர்ச்சி இவற்றை வரரயறு.
(ii) முறையான குறியீடுகளின் படி $k \leq \lambda \leq \delta$ என நிரூபி.
(i) Define vertex connectivity and edge connectivity of a graph.
(ii) With usual notations, prove that $k \leq \lambda \leq \delta$.
18. (அ) ஒரு தொடுத்த வரைபு G ஆயிலீாியனாக அமைய தேவையான மற்றும் போதுமான நிபந்தனை G-ன் ஒவ்வொரு புள்ளியின் படியும் ஒரு இரட்டை படை எண் என நிறுவுக.
Prove that a connected graph G is Eulerian iff every point of G has even degree.

Or
(ஆ) Dirac's-இன் தேற்றத்தை கூறி நிறுவுக.
State and prove Dirac's theorem.
Page 9 Code No. : 30580 B
19. (அ) ஒரு வரைரை கோளத்தின் மேற்பரப்பில் பதிக்க தேவையான மற்றும் போதுமான நிபந்தனை அந்த வரரபை ஒரு தளத்தில் பதிக்க முடியும் என நிரூபி.
Prove that a graph can be embedded in the surface of a sphere iff it can be embedded in a plane.

Or
(ஆ) $\chi^{\prime}\left(k_{n}\right)=\left\{\begin{array}{ll}n, & n \text { ஒரு ஓற்றறபமட எண் } \\ n-1, & n \text { ஓரு இரட்மடபமட எண் }\end{array} \quad(n \neq 1)\right.$
என நிறுவுக.
Show that
$\chi^{\prime}\left(k_{n}\right)= \begin{cases}n & \text { if } n \text { is odd }(n \neq 1) \\ n-1 & \text { if } \quad n \text { is even }\end{cases}$
20. (அ) $n \geq 2$ புள்ளிகளைக் கொண்ட ஒரு வரைபு G மரமாக இருக்க தேவையான மற்றும் போதுமான நிபந்தனை $f(G, \lambda)=\lambda(\lambda-1)^{n-1}$ என நிரூபி.

Prove that a graph G with $n \geq 2$ points is a tree iff $f(G, \lambda)=\lambda(\lambda-1)^{n-1}$.

Or

Page 10 Code No. : 30580 B
(ஆ) ஒரு வலுவற்ற திசை வரைபு D ஆயிலீரியன் திசை வரைபாக இருக்கத் தேவையானதும் நிபந்தனை என்னவெனில் ஒவ்வொரு புள்ளியின் அகப்படியும் புறப்படியும் சமம் என நிறுவுக.

Prove that a weak digraph D is Eulerian iff every point of D has equal in-degree and out-degree.

Page 11 Code No. : 30580 B
(6 pages)
Reg. No. : \qquad

Code No. : 30580 E Sub. Code : SMMA 63

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics - Core
GRAPH THEORY
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. The number of edges in $K_{3,4}$ is
(a) 7
(b) 12
(c) 3
(d) 4
2. If $\delta=8$ for a regular graph then $\Delta=\square$.
(a) 8
(b) 7
(c) 9
(d) 16
3. If e is a bridge of graph G then $w(G-e)=$
(a) $\quad w(G)-1$
(b) $\quad w(G)$
(c) $\quad w(G)+1$
(d) $2 w(G)$
4. Number of cut points of C_{4} is
(a) 1
(b) 0
(c) 3
(d) 2
5. With usual notations, $|V|-|E|+|F|=$
(a) 2
(b) 1
(c) 0
(d) 3
6. If T is a (p, q) tree then which statement is false?
(a) T is a connected acyclic graph
(b) T is a connected regular graph
(c) T is a connected graph, $q=p-1$
(d) T is an acyclic graph, $q=p-1$
7. Which of the following is a planar graph?
(a) K_{7}
(b) $\quad K_{6}$
(c) K_{5}
(d) K_{4}

Page 2 Code No. : 30580 E
8. Chromatic number of \bar{K}_{5} is \longrightarrow.
(a) 2
(b) 3
(c) 5
(d) 1
9. If $f(G, \lambda)=\lambda^{5}-7 \lambda^{4}+19 \lambda^{3}-23 \lambda^{2}+10 \lambda$ then the number of points in G is
(a) 4
(b) 5
(c) 7
(d) 10
10. What is the in-degree of 2 in the following diagraph?

(a) 1
(b) 2
(c) 3
(d) 4

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Prove that any self complementary graph has $4 n$ or $4 n+1$ points.

Or
(b) Let G be a k-regular bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$ and $k>0$. Prove that $\left|V_{1}\right|=\left|V_{2}\right|$.

Page 3 Code No. : 30580 E
12. (a) Is $P=(4,4,4,2,2,2)$ a graphic sequence? If yes then draw a graph for p.

Or
(b) In a graph G, if $\delta \geq k$ then show that G has a path of length k.
13. (a) Prove that every tree has a centre consisting of either one point or two adjacent points.

Or
(b) Prove that $C(G)$ is well-defined.
14. (a) Prove that K_{5} is non-planar.

Or
(b) Show that every uniquely n-colourable graph is ($n-1$) connected.
15. (a) If two digraphs are isomorphic then prove that corresponding points have the same degree pair.

Or
(b) Prove that

$$
f\left(k_{n}, \lambda\right)=\lambda(\lambda-1)(\lambda-2) \ldots(\lambda-n+1) .
$$

Page 4 Code No. : 30580 E
[P.T.O.]

PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) If G is a (p, q) graph without triangles then prove that $q \leq\left[\frac{p^{2}}{4}\right]$.

Or
(b) (i) Show that every graph is an intersection graph.
(ii) Let G be a (p, q) graph. Prove that $L(G)$ is a $\left(q, q_{L}\right)$ graph where $q_{L}=\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}^{2}\right)-q$.
17. (a) Show that a graph G with atleast two points is bipartite iff all its cycles are of even length.

Or
(b) (i) Define vertex connectivity and edge connectivity of a graph.
(ii) With usual notations, prove that $k \leq \lambda \leq \delta$.

Page 5 Code No. : 30580 E
18. (a) Prove that a connected graph G is Eulerian iff every point of G has even degree.

Or
(b) State and prove Dirac's theorem.
19. (a) Prove that a graph can be embedded in the surface of a sphere iff it can be embedded in a plane.

Or
(b) Show that
$\chi^{\prime}\left(k_{n}\right)= \begin{cases}n & \text { if } n \text { is odd }(n \neq 1) \\ n-1 & \text { if } \quad n \text { is even }\end{cases}$
20. (a) Prove that a graph G with $n \geq 2$ points is a tree iff $f(G, \lambda)=\lambda(\lambda-1)^{n-1}$.

Or
(b) Prove that a weak digraph D is Eulerian iff every point of D has equal in-degree and out-degree.

Page 6 Code No. : 30580 E

Reg. No. :

Code No. : 30581 B Sub. Code : SMMA 64

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics - Core
DYNAMICS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. மீப்பெரு உயரம் அடைய ஒரு எறிதல் எடுத்துக் கொள்ளும் காலம்
(அ) $\frac{u \sin \alpha}{g} \quad$ (ஆ) $\frac{u^{2} \sin \alpha}{g}$
(இ) $\frac{u \sin 2 \alpha}{g}$
(ஈ) $\frac{2 u \sin \alpha}{g}$

Time taken by the projectile to reach the greatest height is \qquad
(a) $\frac{u \sin \alpha}{g}$
(b) $\frac{u^{2} \sin \alpha}{g}$
(c) $\frac{u \sin 2 \alpha}{g}$
(d) $\frac{2 u \sin \alpha}{g}$
2. தொடு வானத்திற்கு α கோணத்தில் சாய்ந்திருக்கும் ஒரு வழவழப்பான சாய்தளத்தின் மீது ஏறும் பொருளின் முடுக்கம்
(அ) $g \sin \alpha$ (ஆ) $g \cos \alpha$
(இ) g
(ஈ) ஏதுமில்லை

The acceleration of a particle moving up a smooth inclined plane of inclination α to the horizon is
(a) $g \sin \alpha$
(b) $g \cos \alpha$
(c) g
(d) None of these
3. பின்வரும் பொருட்களில் எவற்றால் செய்யப்பட்ட 2 பந்துகள் மோதும் போது மீள் தள்மை அதிகமாக இருக்கிறது?
(அ) கண்ணாடி (ஆ) தந்தம்
(இ) ஈயம் (ஈ) இரும்பு
Page 2 Code No. : 30581 B

Which of the following material balls when impinge on each other has more elasticity?
(a) glass
(b) ivory
(c) lead
(d) iron
4. நியூட்டனின் விதிப்படி மோதலுக்குப் பின் திசைவேகங்கள் $v_{2}-v_{1}=$ \qquad [u_{1}, u_{2}-மோதலுக்கு முன் உள்ள திசைவேகங்கள்]
(அ) $-\left(u_{2}-u_{1}\right) \quad$ (ஆ) $-e\left(u_{1}-u_{2}\right)$
(இ) $e\left(u_{1}-u_{2}\right)$
(ஈ) $\quad-\left(u_{1}-u_{2}\right)$

As per Newton's experimental law, the velocities after impact $v_{2}-v_{1}=\square$ [where u_{1}, u_{2} - velocities before impact)
(a) $\quad-\left(u_{2}-u_{1}\right)$
(b) $\quad-e\left(u_{1}-u_{2}\right)$
(c) $e\left(u_{1}-u_{2}\right)$
(d) $-\left(u_{1}-u_{2}\right)$
5. ஓர் எளிய சீாிசை இயக்கத்தின் காலவரை
(அ) $\frac{2 \pi}{\sqrt{\mu}}$
(ஆ) $\frac{\sqrt{2} \pi}{\mu}$
(இ) π / μ
(ஈ) ஏதுமில்லை

Page 3 Code No. : 30581 B

The period of a simple Harmonic motion is
(a) $\frac{2 \pi}{\sqrt{\mu}}$
(b) $\frac{\sqrt{2} \pi}{\mu}$
(c) π / μ
(d) None of these
6. ஓர் எளிய சீாிசை இயக்கத்தில், ' t ' என்ற நேரத்தில் கட்டமானது - —
(அ) $t+\epsilon / \sqrt{\mu}$
(ஆ) $t+\frac{1}{\sqrt{\mu}}$
(இ) $t-\epsilon / \sqrt{\mu}$
(*) $t+\frac{1}{2 \epsilon}$

In a simple Harmonic motion, the phase at time t is \qquad
(a) $t+\epsilon / \sqrt{\mu}$
(b) $t+\frac{1}{\sqrt{\mu}}$
(c) $t-\epsilon / \sqrt{\mu}$
(d) $t+\frac{1}{2 \epsilon}$
7. முடுக்கத்தின் ஆரக் கூறு
(அ) $\ddot{r}-r \dot{\theta}^{2}$
(ஆ) $r \dot{\theta}^{2}$
(இ) $r \ddot{\theta}+2 \dot{r} \theta$
(ஈ) $\ddot{r}-\dot{\theta}^{2}$

Page 4 Code No. : 30581 B

The radial component of acceleration is
(a) $\ddot{r}-r \dot{\theta}^{2}$
(b) $r \dot{\theta}^{2}$
(c) $r \ddot{\theta}+2 \dot{r} \theta$
(d) $\ddot{r}-\dot{\theta}^{2}$
8. மையச் சுற்றுப் பாதையின் வகைக் கெழு சமன்பாடு
(அ) $\frac{d^{2} u}{d \theta^{2}}+u=F$
(ஆ) $\frac{d u}{d \theta}+u=\frac{F}{h^{2} u^{2}}$
(இ) $\frac{d^{2} u}{d \theta^{2}}+u^{2}=F$
(ஈ) $\frac{d^{2} u}{d \theta^{2}}+u=F / h^{2} u^{2}$
The differential equation of central orbit is
(a) $\frac{d^{2} u}{d \theta^{2}}+u=F$
(b) $\frac{d u}{d \theta}+u=\frac{F}{h^{2} u^{2}}$
(c) $\frac{d^{2} u}{d \theta^{2}}+u^{2}=F$
(d) $\frac{d^{2} u}{d \theta^{2}}+u=F / h^{2} u^{2}$

Page 5 Code No. : 30581 B
9. திசைவேகத்தின் குறுக்குக் கூறு
(அ) $r \theta$
(ஆ) \ddot{r}
(இ) $r \dot{\theta}$
(ஈ) $\ddot{r}-r \dot{\theta}^{2}$

The transverse component of velocity is
(a) $r \theta$
(b) \ddot{r}
(c) $r \dot{\theta}$
(d) $\ddot{r}-r \dot{\theta}^{2}$
10. மையச் சுற்றுப் பாதையின் $(p-r)$ சமன்பாடு
(அ) $h / p^{2} \frac{d p}{d r}=F \quad$ (ஆ) $h^{2} / p \frac{d p}{d r}=F$
(இ) $h^{2} / p^{2} \frac{d p}{d r}=F$
(ஈ) $\quad h^{2} / p^{3} \frac{d p}{d r}=F$
$(p-r)$ equation of the central orbit is
(a) $h / p^{2} \frac{d p}{d r}=F$
(b) $\quad h^{2} / p \frac{d p}{d r}=F$
(c) $\quad h^{2} / p^{2} \frac{d p}{d r}=F$
(d) $\quad h^{2} / p^{3} \frac{d p}{d r}=F$

Page 6 Code No. : 30581 B

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Answer should not exceed 250 words.
11. (அ) ஒரு குறித்த தொடக்க வேகத்தில் குறித்த கிடைமட்ட வரம்பை அடைய இரு எறிதல் கோணங்களால் இயலும் எனக் காட்டு.

Show that for a given initial velocity, there are two possible directions of projections to obtain a given horizontal range.

Or
(ஆ) ஒரு சாய் தளத்தில் எறியப்பட்ட பொருளின் வரம்பு காண்.

Find the range of a particle projected on an inclined plane.
12. (அ) ஒரு வழு வழு கோளம் நிலலயான சீரான தளத்தில் மோதியபின் அதன் வேகம் மற்றும் நகரும் திசை காண்.

Find the velocity and direction of motion of a smooth sphere after its impact on a fixed smooth plane.

Or

Page 7 Code No. : 30581 B
(ஆ) ஒரு பந்து தன்னை விட M மடங்கு எடையும் $\frac{1}{n}$ மடங்கு திசைவேகமும் கொண்டு அதே திசையில் நகரும் பந்தை மோதுகிறது. மோதலில் முதல் பந்து நின்று விட, மீள்தன்மை வகைக்கெழு $\frac{m+n}{m(n-1)}$ என நிரூபி.

A ball overtakes another ball of m times its mass, which is moving with $\frac{1}{n} t h$ of its velocity in the same direction. If the impact reduces the first ball to rest, prove that the coefficient of elasticity is $\frac{m+n}{m(n-1)}$.
13. (அ) இரு செங்குத்து திசைகளில் சம காலவரரயில் இயங்கும் இரு எளிய சீரிசை இயக்கத்தின் தொகுத்தல் காண்.

Find the composition of two simple harmonic motions of the same period in two perpendicular directions.

Or
Page 8 Code No. : 30581 B
(ஆ) ஓர் எளிய சீாிசை இயக்கத்தில் உள்ள பொருள் ஒரு எல்லை இருந்து மறு எல்லை வரை அலைகள் ஏற்படுத்தும் போது, அலைவின் நடுவில் இருந்து அதன் தூரம் முறையே x_{1}, x_{2}, x_{3}, மூன்று அடுத்தடுத்த நொடிகளில் எனில் அலைவின் காலவரை $\frac{2 \pi}{\cos ^{-1}\left(\frac{x_{1}+x_{3}}{2 x_{2}}\right)}$ என நிரூப.

A particle is moving with SHM and while making an oscillation from one extreme position to the other, its distances from the centre of oscillation at 3 consecutive seconds are x_{1}, x_{2}, x_{3}. Prove that period of oscillation is $\frac{2 \pi}{\cos ^{-1}\left(\frac{x_{1}+x_{3}}{2 x_{2}}\right)}$.
14. (அ) சமகோண சுருள்வரைக்கு ஆயச் சமன்பாடு காண்.

Find the polar equation of equiangular spiral.

Or
(ஆ) ஆயத் தொலைவுகளில் திசை வேகம் மற்றும் முடுக்கம் காண்.

Find the velocity and acceleration in polar Co-ordinates.

Page 9 Code No. : 30581 B
15. (அ) குவியத்தில் துருவம் கொண்ட அதிபரவளையத்தின் மிதி சமன்பாடு தருவிக்க.
Derive the pedal equation for hyperbola-pole at focus.

Or
(ஆ) ஒரு பொருள் வட்டம் வரையறுக்க அதன் உள் புள்ளியின் இயங்கும் விசையின் விதி காண்.
Find the law of force to an internal point under which a body will describe a circle.

PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Answer should not exceed 600 words.
16. (அ) பின்வருவனவற்றைக் காண் :
(i) எறிதலின் மீப்பெரு உயரம்
(ii) மீப்பெரு உயரம் அடையும் நேரம்
(iii) பறக்கும் காலம்
(iv) கிடைமட்ட தளத்தின் எறிதலின் வரம்பு.

Find the following
(i) The greatest height attained by a projectile
(ii) Time taken to reach the greatest height
(iii) Time of flight
(iv) Range of projectile.

Or
Page 10 Code No. : 30581 B
(ஆ) α கோணத்தில் எறியும் போது ஒரு துப்பாக்கிக் குண்டு வரம்பு 1000 மீ. அதே குண்டு இலக்மை நோக்கி 36 கி.மீ/ம வேகத்தில் நகரும் மகிழ்வுந்தில் அதே கோணத்தில் எறிந்தால் வரம்பு $\frac{1000 \sqrt{\tan \alpha}}{7}$ மீ உயரம் எனக் காட்டு.

The range of a rife bullet is 1000 m . When α is the angle of projection. Show that if the bullet is fired with the same elevation from a car travelling $36 \mathrm{~km} / \mathrm{hr}$ towards the target, the range will be increased by $\frac{1000 \sqrt{\tan \alpha}}{7} \mathrm{~m}$.
17. (அ) இரு வழுவழு கோளங்கள் நேராக மோதும் போது இயக்க ஆற்றலின் இழப்பு காண்.
Find the loss of kinetic energy due to direct impact between two smooth spheres.

Or
(ஆ) ஒரு நிலையான கிடைமட்ட தளத்தின் மீது ' h ' என்ற உயரத்திலிருந்து ஒரு பொருள் விழுகிறது. e என்பது மீள்தன்மை கெழு எனில், எம்பி நிறுத்தும் முன் அப்பொருள் கடந்த மொத்த தூரம் $h\left(\frac{1+e^{2}}{1-e^{2}}\right)$ என நிரூபி. மேலும் மொத்த நேரம் $\frac{1+e}{1-e} \sqrt{\frac{2 h}{g}}$ எடுக்கப்பட்டது என்றும் காட்டு.

Page 11 Code No. : 30581 B

A particle falls from a height h upon a fixed horizontal plane if e be the coefficient of restitution, show that the whole distance described before the particle has finished rebounding is $h\left(\frac{1+e^{2}}{1-e^{2}}\right)$. Show also that the whole time taken is $\frac{1+e}{1-e} \sqrt{\frac{2 h}{g}}$.
18. (அ) ஓர் எளிய சீாிசை இயக்கத்தின் வரைபட குறியீட்டை விளக்கிக் கூறு.

Describe the geometrical representation of simple harmonic motion.

Or
(ஆ) ஓரு நகரும் புள்ளியின் இடப்பெயர்ச்சி $x=a \cos w t+b \sin w t$ என்ற சமன்பாட்டின் மூலம் எந்நேரத்திலும் கொடுக்கப்பட்டால், இயக்கம் ஓர் எளிய சீரிசை இயக்கம் என நிரூபி. மேலும் $a=3$, $b=4, w=2$, எனில் கால வரை, வீச்சு, மீப்பெரு திசை வேகம் மேலும் மீப்பெரு முடுக்கம் காண்.
If the displacement of a moving point at any time be given by an equation of the form $x=a \cos w t+b \sin w t$, show that the motion is simple harmonic. Also if $a=3, b=4, w=2$, then find period, amplitude, maximum velocity and maximum acceleration of the motion.

Page 12 Code No. : 30581 B
19. (அ) ஒரு நிலையான திசையில் மாறா திசைவேகம் 'u'-வும், நிலலபுள்ளி O-இருந்து வரையப்பட்ட ஆாம் OP க்கு செங்குத்து திசையில் மாறா திசை வேகம் ' v '-யும் கொண்ட புள்ளி P யின் பாதை

O-வை குவியமாக, $\quad \frac{u}{v}$-மையப்பிறழ்வாகக் கொண்ட கூம்பின் வளைவு என நிரூபி.

Show that the path of a point P which possesses two constant velocities ' u ' and ' v ' the first of which is in a fixed direction and the second of which is perpendicular to the radius OP drawn from a fixed point O , is a conic whose focus is O and eccentricity is $\frac{u}{v}$.

Or
(ஆ) மாறா திசைவேகமும், நிலையான புள்ளி O வைப்பொறுத்து கோணத்திசைவேகம் ஆனது O புள்ளியிலிருந்து தூரத்துக்கு தலைகீழ் மாறியாகவும் இருக்கும் புள்ளி P வரையறுக்கும் வளைவரை சமகோண சுருளி, அதன் துருவம் O என நிறுவுக. அப்புள்ளியின் முடுக்கம் $\mathrm{P}-$-யற்கு செங்குத்தாகவும் OP-க்கு தமைகீழாக மாறும் என நிரூபி.

Page 13 Code No. : 30581 B

A point describes a curve with constant velocity and its angular velocity about a given fixed point O varies inversely as the distance from O, show that the curve is an equiangular spiral whose pole is O and that the acceleration of the point is along the normal at P and varies inversely as OP.
20. (அ) மைய சுற்றுபாதையின் வகைக் கெழு சமன்பாடு ஆயத் தொலைவுகளில் காண்.

Find the differential equation of a central orbit in polar co-ordinates.

Or
(ஆ) குவியத்தினை நோக்கி எப்பொழுதும் இயங்கும் விசையின் கீழ் ஒரு பொருள் நீள் வட்டமாக நகருகிறது. விசைவிதி, பாதையின் புள்ளியில் திசைவேகம் மற்றும் காலவரை நேரம் காண்.

A particle moves in an ellipse under a force which is always directed towards its focus. Find the law of force, the velocity at any point of the path and its periodic time.

Page 14 Code No. : 30581 B
\qquad

Code No. : 30581 E Sub. Code : SMMA 64

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester

Mathematics - Core
DYNAMICS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. Time taken by the projectile to reach the greatest height is \qquad
(a) $\frac{u \sin \alpha}{g}$
(b) $\frac{u^{2} \sin \alpha}{g}$
(c) $\frac{u \sin 2 \alpha}{g}$
(d) $\frac{2 u \sin \alpha}{g}$
2. The acceleration of a particle moving up a smooth inclined plane of inclination α to the horizon is
(a) $g \sin \alpha$
(b) $g \cos \alpha$
(c) g
(d) None of these
3. Which of the following material balls when impinge on each other has more elasticity?
(a) glass
(b) ivory
(c) lead
(d) iron
4. As per Newton's experimental law, the velocities after impact $v_{2}-v_{1}=$
 [where u_{1}, u_{2} - velocities before impact)
(a) $\quad-\left(u_{2}-u_{1}\right)$
(b) $-e\left(u_{1}-u_{2}\right)$
(c) $e\left(u_{1}-u_{2}\right)$
(d) $\quad-\left(u_{1}-u_{2}\right)$
5. The period of a simple Harmonic motion is
(a) $\frac{2 \pi}{\sqrt{\mu}}$
(b) $\frac{\sqrt{2} \pi}{\mu}$
(c) π / μ
(d) None of these

Page 2 Code No. : 30581 E
6. In a simple Harmonic motion, the phase at time t is
(a) $t+\epsilon / \sqrt{\mu}$
(b) $t+\frac{1}{\sqrt{\mu}}$
(c) $t-\epsilon / \sqrt{\mu}$
(d) $t+\frac{1}{2 \epsilon}$
7. The radial component of acceleration is
(a) $\ddot{r}-r \dot{\theta}^{2}$
(b) $r \dot{\theta}^{2}$
(c) $r \ddot{\theta}+2 \dot{r} \theta$
(d) $\ddot{r}-\dot{\theta}^{2}$
8. The differential equation of central orbit is
(a) $\frac{d^{2} u}{d \theta^{2}}+u=F$
(b) $\frac{d u}{d \theta}+u=\frac{F}{h^{2} u^{2}}$
(c) $\frac{d^{2} u}{d \theta^{2}}+u^{2}=F$
(d) $\frac{d^{2} u}{d \theta^{2}}+u=F / h^{2} u^{2}$

Page 3 Code No. : 30581 E
9. The transverse component of velocity is
(a) $r \theta$
(b) \ddot{r}
(c) $r \dot{\theta}$
(d) $\ddot{r}-r \dot{\theta}^{2}$
10. $(p-r)$ equation of the central orbit is
(a) $h / p^{2} \frac{d p}{d r}=F$
(b) $\quad h^{2} / p \frac{d p}{d r}=F$
(c) $\quad h^{2} / p^{2} \frac{d p}{d r}=F$
(d) $\quad h^{2} / p^{3} \frac{d p}{d r}=F$

PART B- ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Answer should not exceed 250 words.
11. (a) Show that for a given initial velocity, there are two possible directions of projections to obtain a given horizontal range.

> Or
(b) Find the range of a particle projected on an inclined plane.

Page 4 Code No. : 30581 E
[P.T.O.]
12. (a) Find the velocity and direction of motion of a smooth sphere after its impact on a fixed smooth plane.

Or

(b) A ball overtakes another ball of m times its mass, which is moving with $\frac{1}{n}$ th of its velocity in the same direction. If the impact reduces the first ball to rest, prove that the coefficient of elasticity is $\frac{m+n}{m(n-1)}$.
13. (a) Find the composition of two simple harmonic motions of the same period in two perpendicular directions.

Or

(b) A particle is moving with SHM and while making an oscillation from one extreme position to the other, its distances from the centre of oscillation at 3 consecutive seconds are x_{1}, x_{2}, x_{3}. Prove that period of oscillation is $\frac{2 \pi}{\cos ^{-1}\left(\frac{x_{1}+x_{3}}{2 x_{2}}\right)}$.

Page 5 Code No. : 30581 E
14. (a) Find the polar equation of equiangular spiral.

> Or
(b) Find the velocity and acceleration in polar Co-ordinates.
15. (a) Derive the pedal equation for hyperbola-pole at focus.

Or

(b) Find the law of force to an internal point under which a body will describe a circle.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Answer should not exceed 600 words.
16. (a) Find the following
(i) The greatest height attained by a projectile
(ii) Time taken to reach the greatest height
(iii) Time of flight
(iv) Range of projectile.

Or
Page 6 Code No. : 30581 E
(b) The range of a rife bullet is 1000 m . When α is the angle of projection? Show that if the bullet is fired with the same elevation from a car travelling $36 \mathrm{~km} / \mathrm{hr}$ towards the target, the range will be increased by $\frac{1000 \sqrt{\tan \alpha}}{7} \mathrm{~m}$.
17. (a) Find the loss of kinetic energy due to direct impact between two smooth spheres.

Or
(b) A particle falls from a height h upon a fixed horizontal plane if e be the coefficient of restitution, show that the whole distance described before the particle has finished rebounding is $h\left(\frac{1+e^{2}}{1-e^{2}}\right)$. Show also that the whole time taken is $\frac{1+e}{1-e} \sqrt{\frac{2 h}{g}}$.
18. (a) Describe the geometrical representation of simple harmonic motion.

Or
(b) If the displacement of a moving point at any time be given by an equation of the form $x=a \cos w t+b \sin w t$, show that the motion is simple harmonic. Also if $a=3, b=4, w=2$, then find period, amplitude, maximum velocity and maximum acceleration of the motion.

Page 7 Code No. : 30581 E
19. (a) Show that the path of a point P which possesses two constant velocities ' u ' and ' v ' the first of which is in a fixed direction and the second of which is perpendicular to the radius OP drawn from a fixed point O , is a conic whose focus is O and eccentricity is $\frac{u}{v}$.

Or
(b) A point describes a curve with constant velocity and its angular velocity about a given fixed point O varies inversely as the distance from O, show that the curve is an equiangular spiral whose pole is O and that the acceleration of the point is along the normal at P and varies inversely as OP.
20. (a) Find the differential equation of a central orbit in polar co-ordinates.

Or
(b) A particle moves in an ellipse under a force which is always directed towards its focus. Find the law of force, the velocity at any point of the path and its periodic time.

Page 8 Code No. : 30581 E
\qquad

Code No. : 30589 E Sub. Code : SEMA 6 A

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics - Core

Major Elective III - ASTRONOMY - II
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. On which of the following days, the equation of time is stationary?
(a) January 12
(b) March 15
(c) July 27
(d) October 3
2. During summer, the longitude of the sun increases from \qquad -.
(a) 0° to 90°
(b) 90° to 180°
(c) 180° to 270°
(d) $270^{\circ}-360^{\circ}$
3. The eccentricity of the lunar orbit is \qquad .
(a) $\frac{1}{18}$
(b) $\frac{1}{16}$
(c) $\frac{1}{60}$
(d) $\frac{1}{15}$
4. How many times does the path of moon crosses the earth's orbit?
(a) 12
(b) 23
(c) 24
(d) 25
5. For a total lunar eclipse to occur, the angular distance of the moon's centre from the line of centres of sun and earth must be at most
\qquad .
(a) $22^{\prime} 8^{\prime \prime}$
(b) $28^{\prime} 6^{\prime \prime}$
(c) $26^{\prime} 8^{\prime \prime}$
(d) $25^{\prime} 6^{\prime \prime}$
6. The minimum number of eclipses in a year is
\qquad ـ.
(a) 1 solar eclipse
(b) 1 lunar eclipse
(c) 2 lunar eclipse
(d) 2 solar eclipses

Page 2 Code No. : 30589 E
7. Which of the following is not an outer planet?
(a) Mercury
(b) Mars
(c) Jupiter
(d) Saturn
8. The maximum elongation of Venus is nearly
\qquad -.
(a) 28°
(b) 35°
(c) 45°
(d) 38°
9. Which of the following planets exhibit all phases?
(a) Venus
(b) Earth
(c) Mars
(d) Pluto
10. Stefan's law suggests that if temperature is doubled, the radiation becomes greater by
\qquad times.
(a) 2
(b) 4
(c) 8
(d) 16

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Prove that the equation of time vanishes four times a year.

Or
(b) Write in detail about the causes of seasons.

Page 3 Code No. : 30589 E
12. (a) Find the relation between sidereal and synodic month.

Or
(b) Explain about the surface structure of moon.
13. (a) Find the condition for the occurence of a lunar eclipse.

Or

(b) Find the length of earth's shadow.
14. (a) Describe about Bode's law.

> Or
(b) Prove that of two planets, the planet nearer to the sun moves with greater angular and linear velocities than the other.
15. (a) Find the elongation of the planets when they are stationary as seen from each other.

Or
(b) Write about asteroids.

Page 4 Code No. : 30589 E
[P.T.O.]

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Find an analytic expression for the equation of time.

Or
(b) Find the actual lengths of various seasons in a year.
17. (a) Explain in detail about lunar librations.

Or
(b) Write about the metonic cycle, Golden number. Find the epact of the year 1952.
18. (a) Explain in detail about the changes in the elongation of a planet.

Or
(b) Define sidereal period and synodic period of a planet. Find the relation between them.
19. (a) Discuss on ecliptic limits. Calculate the major and minor ecliptic limits.

Or

(b) Find the maximum number of eclipses in a year.

Page 5 Code No. : 30589 E
20. (a) Write in detail about the different phases of a planet in one synodic revolution.

Or
(b) Describe the astronomical facts of the planet - Jupiter.

Page 6 Code No. : 30589 E

Code No. : 30590 B Sub. Code : SEMA 6 B
B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics
Major Elective III - FUZZY MATHEMATICS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. பின்வருவனவற்றில் எந்த அடையாளம் உலகளாவிய கணத்தைக் குறிக்கிறது
(அ) $\forall \quad$ (ஆ) a
(இ) A
(ஈ) X
Which of the following symbol is used for universal set
(a) \forall
(b) a
(c) A
(d) X
2. உறுப்பினர் சார்பின் சரகம்
(அ) $\{$ மெய் எண்கள் $\} \quad$ (ஆ) $\{A\}$
(இ) X
(ஈ) $[0,1]$
The range of membership function is
(a) \{real numbers\}
(b) $\{A\}$
(c) X
(d) $[0,1]$
3. $A, B \in \mathcal{H}(X) \quad$ மற்றும் $\alpha, \beta \in[0,1]$ எனில் ${ }^{\alpha}(A \cap B)=\square$.
(அ) ${ }^{\alpha}(A \cup B) \quad$ (ஆ) ${ }^{\alpha} A \cup^{\alpha} B$
(இ) ${ }^{\alpha} A \cap^{\alpha} B$ (ஈ) ஏதுமில்லை
Let $A, B \in \mathcal{Z}(X) \quad$ and $\quad \alpha, \beta \in[0,1] \quad$ there ${ }^{\alpha}(A \cap B)=$ \qquad
(a) ${ }^{\alpha}(A \cup B)$
(b) ${ }^{\alpha} A \cup^{\alpha} B$
(c) ${ }^{\alpha} A \cap^{\alpha} B$
(d) none
4. முதல் சிதைவு தேற்றம் குறிப்பது
(அ) $A=\bigcup_{\alpha \in[0,1]} A \quad$ (ஆ) $A={ }_{\alpha} A$
(இ) ${ }_{\alpha} A=\bigcup_{\alpha \in[0,1]} A \quad$ (ஈ) $\quad A={ }_{\alpha+} A$
Page 2 Code No. : 30590 B

First decomposition theorem states
(a) $A=\bigcup_{\alpha \in[0,1]}^{\alpha} A$
(b) $A={ }_{\alpha} A$
(c) ${ }_{\alpha} A=\bigcup_{\alpha \in[0,1]} A$
(d) $A={ }_{\alpha+} A$
5. $u(a, 0)$ ன் மதிப்பு
(அ) $0 \quad$ (ஆ) a
(இ) $u(a)$
(※) $u(0)$
The value of $u(a, 0)$
(a) 0
(b) a
(c) $u(a)$
(d) $u(0)$
6. $a, b \in[0,1]$ மற்றும் $a \leq b$ எனில்
(அ) $C(b) \geq C(a) \quad$ (ஆ) $C(a) \geq C(b)$
(இ) $C(b)=C(a) \quad$ (ஈ) $\quad C(a)<C(b)$
If $a, b \in[0,1]$ and $a \leq b$, then
(a) $C(b) \geq C(a)$
(b) $\quad C(a) \geq C(b)$
(c) $\quad C(b)=C(a)$
(d) $\quad C(a)<C(b)$
7. $A \subseteq E$ மற்றும் $B \subseteq F$ எனில்
(அ) $A / B \subseteq E / F$
(ஆ) $E-F \subseteq A-B$
(இ) $E / F \subseteq A / B$
(ஈ) $\quad A-F \subseteq B-F$

Page 3 Code No. : 30590 B

If $A \subseteq E$ and $B \subseteq F$ then
(a) $A / B \subseteq E / F$
(b) $E-F \subseteq A-B$
(c) $E / F \subseteq A / B$
(d) $A-F \subseteq B-F$
8. $\operatorname{MAX}(A, A)=A$ என்பது
(அ) சமனி (ஆ) தன்னடுக்கு
(இ) தன்னகப்படுத்தல்
(ஈ) இயைபுடையது
$\operatorname{MAX}(A, A)=A$ is
(a) identity
(b) idempotence
(c) absorption
(d) associativity
9. தெளிவற்ற முடிவெடித்தலை அறிமுகப்படித்தியது
(அ) பெல்மேன் (ஆ) पிலின்
(இ) வின்ஸ்டன்
(ஈ) டேன்சிக்
Fuzzy decision making was introduced by
(a) Bellman
(b) Blin
(c) Whinston
(d) Datiz
10. பல நபர் தெளிவில்லா முடிவெடுத்தல் அறிமுக ஆண்டு
(அ) 1970
(ஆ) 1974
(இ) 1980
(ஈ) 1982

Multi person decision making was introduced
(a) 1970
(b) 1974
(c) 1980
(d) 1982

Page 4 Code No. : 30590 B
[P.T.O.]

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions.
11. (அ) பின்வருவனவற்றை வரையறு :
(i) α-வெட்டு
(ii) வலுவான α-வெட்டு

Define the following :
(i) α-cut
(ii) strong α-cut

Or
(ஆ) பன்வருவனவற்றை வரையறு :
(i) இடைவெளி மதிப்புடையை தெளிவில்லா கணம்
(ii) L-தெளிவில்லா கணம்.

Define the following :
(i) Interval valued fuzzy sets
(ii) L-fuzzy sets.
12. (அ) $A, B \in \mathscr{Z}(X)$ எனில் அனைத்து $\alpha, \beta \in[0,1]$ விற்கும் ${ }^{\alpha}(A \cap B)={ }^{\alpha} A \cap^{\alpha} B$ என நிறுவுக.
Let $A, B \in \mathscr{H}(X)$, then for all $\alpha, \beta \in[0,1]$ prove that ${ }^{\alpha}(A \cap B)={ }^{\alpha} A \cap^{\alpha} B$.

Or

Page 5 Code No. : 30590 B
(ஆ) $f: X \rightarrow Y$ என்பது ஒரு மிருது சார்பு எனில்
அனைத்து $A \in \mathcal{Z}(X)$ ல் $f(A)=\bigcup_{\alpha t[0,1]} f\left({ }_{\alpha+} A\right)$ என நிறுவுக.
Let $f: X \rightarrow Y$ be an arbitrary crisp function.
Then for any $A \in \mathcal{Z}(X)$, prove that $f(A)=\bigcup_{\alpha t[0,1]} f\left({ }_{\alpha+} A\right)$.
13. (அ) எந்த ஒரு தெளிவில்லா பூரணமும் அதிகபட்சம் ஒரு சமநிலலயைக் கொண்டது என நிறுவுக.
Prove that every fuzzy complement has atmost one equilibrium.

Or
(ஆ) t-இணை நியமத்தின் ஒப்புக்கொள்ளப்பட்ட உண்மைகளை எழுதுக.
Write the axiom of t-conorms.
14. (அ) இடைவெளியில் எண்கணித செயல்பாடுகளை விவாி.

Explain the arithmetic operations on intervals.

Or
(ஆ) தெளிவில்லா சமன்பாடுகள் பற்றி சிறு குறிப்பு வரைக.
Write a short note on Fuzzy equations.
Page 6 Code No. : 30590 B
15. (அ) தெளிவில்லா மாதிரி கூட்டு முடிவெடுத்தலை விவாி.

Explain the fuzzy model group decision.
Or
(ஆ) தெளிலில்லா ஒருபடி திட்டமிடலை விவாி.
Explain the fuzzy linear programming.
PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions.
16. (அ) மிருதுகணம் பற்றி விவாிக்க.

Explain the crisp set in detail.
Or
(ஆ) தெளிலில்லா கணங்களின் அடிப்படை கருத்துக்களை விவரி.
Explain the basic concepts of fuzzy sets.
17. (அ) முதல் சிதைவு தேற்றத்தை எழுதி நிறுவுக.

State and prove first decomposition theorem.

Or

(ஆ) தெளிவில்லா கணங்களின் விாிவாக்க கொள்கையை விவாி.
Explain the extension principle for fuzzy sets.
18. (அ) $a, b \in[0,1]$ எனில் $i_{\min }(a, b) \leq i(a, b) \leq \min (a, b)$ என நிறுவுக.
If $a, b \in[0,1]$, then prove that $i_{\text {min }}(a, b) \leq i(a, b) \leq \min (a, b)$.

Or
Page 7 Code No. : 30590 B
(ஆ) t-நியமத்தின் வகைப்படுத்தல் தேற்றத்தை எழுதி நிறுவுக.
State and prove characterization theorem of t-Norms.
19. (அ) $* \in\{+,-, \cdot, /\}$ மற்றும் A, B என்பது தொடர்ச்சியுடைய தெளிலில்லா எண்கள் எனில் தெளிவில்லா கணம் $A * B$, $(A * B)(z)=\sup \min [A(x), B(y)] \quad$ என்ற வரையறுக்கப்பட்ட தொடர்ச்சியுடைய தெளிலில்லா எண் என நிறுவுக.
Let $* \in\{+,-, \cdot, /\}$ and let A, B denote continuous fuzzy numbers. Then prove that the fuzzy set $A * B$ defined by $(A * B)(z)=\sup _{z=x * y} \min [A(x), B(y)] \quad$ is a continuous fuzzy number.

Or
(ஆ) தெளிவில்லா எண்களின் பின்னல் தட்டியை விவாி. Explain the lattice of fuzzy numbers.
20. (அ) தனிநபா் முடிவெடுத்தலை விவாி.

Explain the individual decision making.
Or
(ஆ) பலநபா் முடிவெடுத்தலை விவாி.
Explain the multiperson decision making.

Page 8 Code No. : 30590 B

Code No. : 30590 E Sub. Code : SEMA 6 B
B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics
Major Elective III - FUZZY MATHEMATICS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. Which of the following symbol is used for universal set
(a) \forall
(b) a
(c) A
(d) X
2. The range of membership function is
(a) \{real numbers\}
(b) $\{A\}$
(c) X
(d) $[0,1]$
3. Let $A, B \in \mathscr{F}(X)$ and $\alpha, \beta \in[0,1]$ there ${ }^{\alpha}(A \cap B)=$ \qquad
(a) ${ }^{\alpha}(A \cup B)$
(b) ${ }^{\alpha} A \cup^{\alpha} B$
(c) ${ }^{\alpha} A \cap^{\alpha} B$
(d) none
4. First decomposition theorem states
(a) $A=\bigcup_{\alpha \in[0,1]}^{\alpha} A$
(b) $A={ }_{\alpha} A$
(c) ${ }_{\alpha} A=\bigcup_{\alpha \in[0,1]} A$
(d) $A={ }_{\alpha+} A$
5. The value of $u(a, 0)$
(a) 0
(b) a
(c) $u(a)$
(d) $u(0)$
6. If $a, b \in[0,1]$ and $a \leq b$, then
(a) $C(b) \geq C(a)$
(b) $\quad C(a) \geq C(b)$
(c) $C(b)=C(a)$
(d) $C(a)<C(b)$
7. If $A \subseteq E$ and $B \subseteq F$ then
(a) $A / B \subseteq E / F$
(b) $E-F \subseteq A-B$
(c) $E / F \subseteq A / B$
(d) $A-F \subseteq B-F$

Page 2 Code No. : 30590 E
8. $\operatorname{MAX}(A, A)=A$ is
(a) identity
(b) idempotence
(c) absorption
(d) associativity
9. Fuzzy decision making was introduced by
(a) Bellman
(b) Blin
(c) Whinston
(d) Datiz
10. Multi person decision making was introduced
(a) 1970
(b) 1974
(c) 1980
(d) 1982

PART B $-(5 \times 5=25$ marks $)$

Answer ALL questions.

11. (a) Define the following :
(i) α-cut
(ii) strong α-cut

Or
(b) Define the following :
(i) Interval valued fuzzy sets
(ii) L-fuzzy sets.

Page 3 Code No. : 30590 E
12. (a) Let $A, B \in \mathcal{F}(X)$, then for all $\alpha, \beta \in[0,1]$ prove that ${ }^{\alpha}(A \cap B)={ }^{\alpha} A \cap^{\alpha} B$.

Or

(b) Let $f: X \rightarrow Y$ be an arbitrary crisp function. Then for any $A \in \mathcal{F}(X)$, prove that $f(A)=\bigcup_{\alpha t[0,1]} f\left({ }_{\alpha+} A\right)$.
13. (a) Prove that every fuzzy complement has atmost one equilibrium.

Or
(b) Write the axiom of t-conorms.
14. (a) Explain the arithmetic operations on intervals.

Or
(b) Write a short note on Fuzzy equations.
15. (a) Explain the fuzzy model group decision.

Or
(b) Explain the fuzzy linear programming.

Page 4 Code No. : 30590 E
[P.T.O.]

PART C $-(5 \times 8=40$ marks $)$

Answer ALL questions.
16. (a) Explain the crisp set in detail.

Or
(b) Explain the basic concepts of fuzzy sets.
17. (a) State and prove first decomposition theorem.

Or
(b) Explain the extension principle for fuzzy sets.
18. (a) If $a, b \in[0,1]$ then prove that $i_{\text {min }}(a, b) \leq i(a, b) \leq \min (a, b)$.

Or
(b) State and prove characterization theorem of t-Norms.
19. (a) Let $* \in\{+,-, \cdot, /\}$ and let A, B denote continuous fuzzy numbers. Then prove that the fuzzy set $A * B$ defined by $(A * B)(z)=\sup _{z=x * y} \min [A(x), B(y)] \quad$ is a continuous fuzzy number.

Or
(b) Explain the lattice of fuzzy numbers.

Page 5 Code No. : 30590 E
20. (a) Explain the individual decision making.

Or
(b) Explain the multiperson decision making.

Page 6 Code No. : 30590 E

Reg. No. :

Code No. : 30591 B Sub. Code : SEMA 6 D

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics
Major Elective - IV : OPERATIONS RESEARCH-II
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks SECTION A - ($10 \times 1=10$ marks $)$

Answer ALL questions.
Choose the correct answer.

1. ஒரு விளையாட்டின் பெரும்சிறும மற்றும் சிறுபெரும மதிப்புகள் சமமாக இருக்கும் போது,
(அ) அது சேணம் புள்ளியாக இருக்கும்
(ஆ) தீர்வு கிடைக்காது
(இ உத்திகள் கலவையாக இருக்கும்
(ஈ) முடிவுற்ற தீர்வாக இருக்கும்

When maxmin and minmax values of the game are same, than
(a) There is a saddle point
(b) Solution does not exist
(c) Strategies are mixed
(d) Infinite solution
2. இரண்டிற்கு மேற்பட்ட ஆட்டக்காரர்கள் ஒரு விளையாட்டில் ஈடுபட்டால் அது ——
(அ) சீரற்ற விளையாட்டு
(ஆ) பேச்சுவார்த்தை்்குப்பட்ட விளையாட்டுகள்
(இ) முரண்பட்ட விளையாட்டு
(ஈ) n-நபர்களின் விளையாட்டுகள்
Games which involve more than, two players are called
(a) Biased games
(b) Negotiable games
(c) Conflicting games
(d) n-person games
3. மாற்றுதலுக்கான கணக்கு பற்றி கருத்தில் எடித்தக்கொள்வதில்லை.
(அ) வரைபட ரீதியாக மோசமடைந்த பொருளை
(ஆ) தீடீரென செயல்பாட்டை இழந்த பொருளை
(இ) உகந்த மாற்று இடைவெளியை தீர்மானிப்பதை
(ஈ) லாபத்தை ஈடிசெய்ய ஒரு பொருளை பராமரிப்பது
Page 2 Code No. : 30591 B

The problem of replacement is not concerned about the \qquad
(a) Items are deteriorate graphically
(b) Items that fails suddenly
(c) Determination of optimum replacement interval
(d) Maintenance of an item to work out profitability
4. பணத்தின் நேர மதிப்பு கருதப்படும் போது
(அ) செலவு தள்ளுபடி செய்யப்பட வேண்டும்
(ஆ) செலவினங்களின் நேரம் முக்கியம்
(இ) தற்போதைய மதிப்பு காரணிகள் எடைகளாக செயல்படுகின்றன.
(ஈ) மேற்கண்ட அளைத்தும்
When time value of money is considered
(a) Cost need to be discounted
(b) Timing of incurrence of costs in important
(c) The present value factors serve as the weights
(d) All of the above

Page 3 Code No. : 30591 B
5. பின்வருவனவற்றுள் எது சாியானது அல்ல?
(அ) வரிசைக் கோட்பாடு என்பது வாடிக்கையாளர்களின் வருகை சேவையைப் பெறுதல் மற்றும் அமைப்பினை விட்டு வெளியேறுதல் போன்ற சூழ்நிலையைக் கையாள்கிறது
(ஆ) வாிசைக் கோட்பாட்டில் வாடிக்கையாளர்கள் எனப்படுபர்கள் மனிதர்கள், இயந்திரங்கள் மற்றும் கடிதங்கள் மற்றும் பல ஆகியவற்றை உள்ளடக்கியது
(இ) ஒரு வாிசை என்பது வாடிக்கையாளர்களுக்கு சேவை செய்யக் காத்திருப்பதை குறிக்கிறது
(ஈ) வரிசை்் கோட்பாட்டின் ஆய்வு மேலாளருக்கு உகந்த அளவிலான சேவையை நிறுவ உதவுகிறது

Which of the following is not correct?
(a) Queuing theory deals with situations where customers arrive, wait for the service, get the service and leave the system
(b) Customers, in queuing theory might include humans, machines, ships, letters and so on
(c) A queue refers to physical presence of the customers waiting to be served.
(d) A study of queuing theory help the manager to establish an optimum level of service

Page 4 Code No. : 30591 B
6. பல சேவையகங்கள் என்பது ——_ _
(அ) இணையாக இருக்கலாம்
(ஆ) தொடாில் இருக்கலாம்
(இ) இணையாக மற்றும் தொடராக இருக்கலாம்
(ஈ) மேற்கண்ட அனைத்தும்
Multiple serves may be
(a) In parallel
(b) In series
(c) In combination of parallel and series
(d) All of the above
7. Critical path analysis-ல் CPM என்ற வார்ததயின் பொருள்
(அ) Critical Path Method
(ஆ) Crash Project Management
(இ) Critical Project Management
(ஈ) Critical Path Management
In critical path analysis, the word CPM means
(a) Critical Path Method
(b) Crash Project Management
(c) Critical Project Management
(d) Critical Path Management

Page 5 Code No. : 30591 B
8. செயல்பாட்டு மந்தமான நேரத்திற்கு பொதுவாக பயன்படுத்தப்படும் சொல் ___
(அ) மந்தநிலை அற்ற
(ஆ) சுயாதீன மந்தநிலை
(இ) மொத்த மந்தநிலல
(ஈ) மேற்கூறிய அனைத்தும்
The term commonly used for activity stack time is
(a) Free float
(b) Independent float
(c) Total float
(d) All of the above
9. பொதுவாக சரக்குகளின் கட்டமைப்பு என்பது
(அ) நிரப்புதல் காலத்தில் தேவையை பூர்த்தி செய்ய
(ஆ) பற்றாக்குறைத் தவிர்க்க இருப்பு சரக்குகளை எடுத்துச்செல்ல
(இ) சந்தை நிலைமைகளுக்கு ஏற்ப மாற்றிக் கொள்ள
(ஈ) மேற்கூறிய அனைத்தும்
Inventories in general are build up
(a) Satisfy demand during period of replenishment
(b) Carry reserve stocks to avoid shortages
(c) Keep place with changing market conditions
(d) All of the above

Page 6 Code No. : 30591 B
10. எந்த செலவுகள் ஆர்டர் அளவுடன் மாறுபடிம்?
(அ) அலகு செலவு மட்டும்
(ஆ) வைத்திருக்கும் செலவு மட்டும்
(இ) மறு ஓழுங்கு செலவு மட்டும்
(ஈ) இவை அனைத்தும்
Which cost can very with order quantity?
(a) Unit cost only
(b) Holding cost only
(c) Re-order cost only (d) All of these

SECTION B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) பின்வரும் செலுத்தல் அணியை உடைய

விளையாட்டை கருத்தில் கொள்க.
விளையாடுபவர்B
விளையாடுபவர் $\mathrm{A}\left(\begin{array}{ll}5 & 0 \\ 0 & 2\end{array}\right)$
விளையாட்டு கண்டிப்பாக தீர்மானிக்கப்பட்டது என நிறுவுக. மேலும் விளையாட்டின் மதிப்பு காண்க.
Consider the game with the following payoff matrix

> Player B

$$
\text { Player A }\left(\begin{array}{ll}
5 & 0 \\
0 & 2
\end{array}\right)
$$

Show that the game is strictly determinable. Also find the value of the game.

Or
Page 7 Code No. : 30591 B
(ஆ) பின்வரும் செலுத்துதல் அணியைக் கொண்ட விளையாட்டிற்கான உகந்த உத்திகள் மற்றும் விளையாட்டின் மதிப்பு தீர்மானிக்க.

$$
\begin{gathered}
P_{2} \\
P_{1}\left(\begin{array}{ll}
5 & 1 \\
3 & 4
\end{array}\right)
\end{gathered}
$$

For the game with the following payoff matrix determine the optimum strategies and the value of the game

$$
\begin{gathered}
P_{2} \\
P_{1}\left(\begin{array}{ll}
5 & 1 \\
3 & 4
\end{array}\right)
\end{gathered}
$$

12. (அ) இயந்திரம் A-ன் விலை ரூ.90,000 வருடாந்திர இயக்க செலவு, முதல் வருடத்திற்கு ரூ. 200 மற்றும் அது வருடததிற்கு ரூ.2,000 வீதம் உயர்த்தப்படுகிறது. அந்த இயந்திரத்தை மாற்றுவதற்கான சிறந்த வயதினைக் கணக்கிடுக. மேலும், மாற்றத்திற்கான உகந்த கொள்கை பின்பற்றப்படுகிறது எனில், அந்த இயந்திரத்தினை வைத்திருக்க மற்றும் இயக்குவதற்கு ஆகும் சராசாி வருடாந்திர செலவு என்ன?
Machine A costs Rs.9,000. Annual operating cost are Rs. 200 for the first year, and the increase by Rs.2,000 every year. Determine the best age at which to replace the machine. If the optimum replacement policy is followed, what will be the average yearly cost of owning and operating the machine?

Or
Page 8 Code No. : 30591 B
(ஆ) தனிப்பட்ட மாற்று கொள்கை பற்றி விவரிக்க.
Explain individual replacement policy.
13. (அ) ஒரு சாலை வழிப் போக்குவாத்து நிறுவனத்தில் ஒரு நேரத்தில ஒரு முன்பதிவு கணக்கா் இருக்கிறார். அவர் பஸ் அட்டவணைகளின் தகவல்களைக் கையாளுகிறார் மற்றும் முன்பதிவு செய்கிறார். ஓரு மணி நேரத்திரற்கு 8 வாடிக்கையாளர்கள் என்ற விகிதத்தில் வருகிறார்கள் மற்றும் கணக்கா் ஒரு மணி நேரத்திரற்கு சராசாியாக 12 வாடிக்கையாளா்களுக்கு சேவை செய்கிறார். உங்களுடைய ஊகங்களுக்கு பிறகு, கீழ்கண்டவற்றிற்கு விடையளி.
(i) கணக்காின் சேவவக்காக காத்திருக்கும் வாடிக்கையாளர்களின் சராசாி எண்ணிக்கை என்ன?
(ii) சேவையைக் பெறுவதற்கு முன்னால் காத்திருக்கும் வாடிக்கையாளர்களின் சராசாி நேரம் என்ன?

A road transport company has one reservation clerk on duty at a time. He handles information of bus schedules and makes reservations. Customers arrive at a rate of 8 per hour and the clerk can service 12 customers on an average per hour. After stating your assumptions, answers the following.

Page 9 Code No. : 30591 B
(i) What is the average number of customers waiting for the service of the clerk?
(ii) What is the average time a customer has to wait before getting service?

Or
(ஆ) ஒரு நாளளக்கு 30 ரயில்கள் என்ற விகிதத்தில் சரக்கு ரயில்கள் ஓரு யார்டில் வருகின்றன என்று வைத்துக் கொள்ளுங்கள், மேலும் வருகைக்கு இடையேயான நேர்ஙகள் ஒரு அதிவேக விநியோகத்தைப் பின்பற்றுகின்றன என்க. ஒவ்வொரு ரயிலுக்கும் சேவை நேரம் 36 நிமிடங்கள் என அதிவேகத்தில் கணக்கிடப்படுகிறது. யார்டில் 9 ரயில்களள நிறுத்திக் கொள்ள முடிந்தால் (10 கோடுகள் உள்ளன. அவற்றில் ஒன்று போக்குவரத்திற்காக உள்ளது), எனில் காலியான நிகழ்தகவைக் கணக்கிடுக மற்றும் சராசாி வாிசை நீளத்தினைக் காண்க.

Assume that the goods trains are coming in a yard at the rate of 30 trains per day and suppose that the inter arrival times follow an exponential distribution. The service time for each train is assumed to be exponential with an average of 36 minutes. If the yard can admit 9 trains at a time (there being 10 lines, one of which is reserved for shunting purpose), calculate the probability that the yard is empty and find the average queue length.

Page 10 Code No. : 30591 B
14. (அ) முக்கியமான பாதை மற்றும் திட்டத்தின் காலம் ஆகியவற்றைக் காண்க.

நிகழ்வு	A	B	C	D	E	F	G	H	I	J
முன்னோடி	-	-	A	B	C,D	C,D	E	E	F,G	H,I
காலம்	4	6	9	7	4	4	3	6	9	4
(நாட்கள்)										

Find the critical path and duration of project:

Activity :	A	B	C	D	E	F	G	H	I	J
Predecessor :	-	-	A	B	C,D	C,D	E	E	F,G	H,I
Duration (days)	4	6	9	7	4	4	3	6	9	4

Or

Page 11 Code No. : 30591 B

A project has the following time schedule :

Activity	$1-2$	$1-3$	$1-4$	$2-5$	$3-6$	$3-7$
Time in week	2	2	1	4	8	5
Activity	$4-6$	$5-8$	$6-9$	$7-8$	$8-9$	
Time in week	3	1	5	4	3	

Construct PERT network and compute the critical path and its duration.
15. (அ) ஒரு எண்ணெய் இயந்திர உற்பத்தியாளர் ஒரு பகுதி ரூ. 42 வீதம் மசகு எண்ணெயினை விற்பனையாளரிடம் இருந்து கொள்முதல் செய்கிறார். இதன் தேவை வருடத்திற்கு ரூ.1,800. ஒரு ஆர்டாின் வாிகை அளவு என்னவாக இருக்க வேண்டும். ஒரு ஆர்டரை வைப்பதற்காக ஒரு ரூபாயக்கு சாக்கு சுமக்கும் கட்டணம் 20 பைசா மட்டுமே

An oil engine manufacturer purchases lubricants at the rate of Rs. 42 per piece from a vender. The requirements of these lubricants is Rs. 1,800 per year. What should be the order quantity per order, if the cost per placement of an order is Rs. 16 and inventory carrying charge per rupee per year is only 20 paise.

Or

Page 12 Code No. : 30591 B
(ஆ) ஒரு ஒப்பந்தகாரர் ஒரு ஆட்டோ மொபைல் உற்பத்தியாளருக்கு ஓரு நாளளக்கு ரூ.10,000 தாங்கு உருளைகள் வழங்க வேண்டும். அவா் ஒரு தயாாிப்பு ஓட்டத்தைத் தொடங்கும் போது, ஒரு நாளைக்கு 25,000 தாங்கு உருளைகள் உருவாக்க முடியும் என்று அவர் கண்டறிந்துள்ளாா். ஒரு வருடத்திற்கு ஓரு தாங்கி வைத்திருப்பதற்கான செலவு ரூ. 2 மற்றும் ஒரு உற்பத்தி ஓட்டத்தின் அமைவு செலவு ரூ.1,800 ஆகும். உற்பத்தி ஓட்டம் எவ்வளவு அடிக்கடி செய்யப்பட வேண்டும்?

A contractor has to supply 10,000 bearing per day to an automobile manufacturer. He find that, when he starts a production run, he can produce 25,000 bearing per day. The cost of holding a bearing in stock for one year is Rs. 2 and the set up cost of a production run is Rs. 1,800 . How frequently should production run be made?

SECTION C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) கீழ்கண்ட 2×4 விளையாட்டை வரைபட முறையில் தீர்க்க

விளையாடுபவர் B
$B_{1} \quad B_{2} \quad B_{3} \quad B_{4}$
விளையாடுபவர் $\mathrm{A} \begin{aligned} & A_{1} \\ & A_{2}\end{aligned}\left(\begin{array}{cccc}2 & 1 & 0 & -2 \\ 1 & 0 & 3 & 2\end{array}\right)$
Page 13 Code No. : 30591 B

Solve the following 2×4 game graphically :
Player B

$$
\text { Player A } \begin{gathered}
B_{1} \\
A_{1} \\
A_{2}
\end{gathered} \begin{array}{ccc}
B_{3} & B_{4} \\
& \left.\begin{array}{cccc}
2 & 1 & 0 & -2 \\
1 & 0 & 3 & 2
\end{array}\right) \\
\text { Or }
\end{array}
$$

(ஆ) கீழ்க்காணும் விளையாட்டின் செலுத்துதல் அணியைத் தீர்க்க.
$\begin{array}{llll}B_{1} & B_{2} & B_{3} & B_{4}\end{array}$
A_{1}
A_{2}
$A_{3}$$\left(\begin{array}{cccc}4 & -2 & 3 & -1 \\ -1 & 2 & 0 & 1 \\ -2 & 1 & -2 & 0\end{array}\right)$

Solve the game whose payoff matrix is given below :
$\left.\begin{array}{c}B_{1} \\ A_{1} \\ A_{2} \\ A_{2} \\ A_{3}\end{array} \begin{array}{cccc}4 & -2 & 3 & B_{4} \\ -1 & 2 & 0 & 1 \\ -2 & 1 & -2 & 0\end{array}\right)$
17. (அ) பணத்தின் மதிப்பு வருடத்திற்கு 10% எனக் கருதப்படட்டிம், ஒவ்வொரு 3 வருடங்களுக்குப் பிறகு இயந்திரம் A மாற்றப்படும் என்று வைத்துக் கொள்வோம், அதே சமயம் ஒவ்வொரு ஆறு வருடங்களுக்கும் பின்னர் இயந்திரம் B மாற்றப்படுகிறது. இரண்டு இயந்திரங்களுக்கும் ஆண்டு செலவுகள் கீழே கொடுக்கப்பட்டுள்ளன.

Page 14 Code No. : 30591 B

ஆண்டு :	1	2	3	4	5
இயந்திரம் A :	1000	200	400	1000	200
இயந்திரம் B :	1700	100	200	300	400

எந்த இயந்திரத்தை வாங்க வேண்டும் என்பதைத் தீர்மானிக்கவும்.

Let the value of money be assumed to be 10% per year and suppose that machine A is replaced after 3 years whereas machine B is replaced after every six years. The yearly costs of both the machines are given below :

Year :	1	2	3	4	5
Machine A :	1000	200	400	1000	200
Machine B :	1700	100	200	300	400

Determine which machine should be purchased.

Or

(ஆ) டிஜிட்டல் கணினியில் ஒரு குறிப்பிட்ட வகை டிரான்சிஸ்டர்களுக்கு பின்வரும் தோல்வி விகிதங்கள் காணப்படுகின்றன.

```
வாரத்தின் 
முடிவில் :
இன்றுவரை 
தோல்வியின்
நிகழ்தகவு :
```

Page 15 Code No. : 30591 B

பழுதான ஒரு டிரான்சிஸ்டரினை மாற்றுவதற்கான செலவு ரூ.1.25. இந்த டராான்சிஸ்டர்கள் அனைத்தும
நேரத்தில் நிலையான இடைவெளி
ாற்றவும், தனிப்பட்ட டிரான்சிஸ்டர்கள் சேவையில்
தோல்வியடையும் போது, அவற்றை மாற்றவும்
முடிவு செய்யப்படுகிறது. குழு மாற்றுவதற்கான
செலவு ஒரு டிரான்சிஸ்டருக்கு 30 பைசா என்றால்,
மு மாறறுகளுககு இடையிலான சிறநதத
இடைவெளி என்ன? டிரான்சிஸ்டருக்கு எந்த
¢ழுமாற்று விலையில் கண்டிப்பாக தனிப்
¢ற்று கொள்கை ஏற்றுக் கொள்

The following failure rates have been observed for a certain type of transistors in a digital computer:

End of the
week :

1

Probability
of failure
rate :

2

The cost of replacing an individual failed transistor is Rs.1.25. The decision is made to replace all these transistors simultaneously at fixed intervals and to replace the individuals transistors as they fail in service. If the costs of group replacement in 30 paise per transistor, what is the best interval between group replacement?

Page 16 Code No. : 30591 B
18. (அ) ஒரு பொதுத் தொலைபேசி சாவடியில் வாடிக்கையாளர்களின் வருகை விகிதம் ஒரு வாடிக்கையாளருக்கும் அடுத்த வாடிக்கையாளருக்கும் இடையில் சராசாியாக 10 நிமிடங்கள் பாய்சான் பரவலைக் கொண்டுள்ளது. தொலைபேசியின் காலம் அதிவேகப் பரவலை பின்பற்றுவதாக கருதப்படுகிறது, சராசாி நேரம் 3 நிமிடங்கள்.
(i) சாவடிக்கு வரும் ஒருவர் காத்திருக்க வேண்டிய நிகழ்த்தகவு என்ன?
(ii) அவ்வப்போது உருவாகும் வெற்று அல்லாத வரிசைகளின் சராாசி நீளம் என்ன?
(iii) மகாநகர் தொலைபேசி நிகாம் லிமிடெட் இரண்டாவது சாவடியை நிறுவும் போது, வாடிக்கையாளர்கள் அழைப்பு விடிக்க குறைந்தபட்சம் 3 நிமிடங்கள் காத்திருக்க வேண்டிம் என்று வாடிக்கையாளர்கள் எதிர்பார்க்கிறார்கள். இரண்டாவது சாவடியை நியாயப்படுத்த வாடிக்கையாளர்களின் ஓட்டம் எவ்வளவு நேரம் அதிகாிக்க வேண்டிம்.
(iv) தொலைபேசி பயன்பாட்டில் இருக்கும் ஒரு நாளின் பகுதியை மதிப்பிடுங்கள்
தொலல பேசிக்காக காத்திருக்கும் அவரது அழைப்பை முடிக்க அவருக்கு 10 நிமிடங்களுக்கு மேல் எடுக்கும் நிகழ்தகவு என்ன?

Page 17 Code No. : 30591 B

The rate of arrival of customers at a public telephone both follows Poisson distribution with an average time of 10 minutes between one customer and the next. The duration of a phone call is assumed to follow exponential distribution, with mean time of 3 minutes.
(i) What is the probability that a person arriving at the both will have to wait?
(ii) What is the average length of the nonempty queues that form from time to time?
(iii) The Mahanagar telephone Nigam Ltd. will install a second booth when it is convinced that the customers would except waiting for at last 3 minutes for their turn to make a call. By how much time should the flow of customers increase in order to justify a second booth estimate the fraction of a day the phone will be in.
(iv) What is the probability that it will take him more than 10 minutes altogether to wait for phone and complete his call?

Or

Page 18 Code No. : 30591 B

```
(ஆ) ஒரு சூப்பர் மார்கெட்டில் இரண்டு பெண்கள்
         கவுண்டாில் சேவை वெய்கிறார்கள்.
        வாடிக்கயைாளர்கள் பாய்சான் பேஷனில் ஒரு மணி
        நேரத்திற்கு 12 என்ற விகிதத்தில்
        வாடிக்கையாளர்களுக்கு வருகிறார்கள். சேவை
        நேரம் ஒவ்வொரு வாடிக்கையாளர்களுக்கு
        அதிவேகத்தில் 6 நிமிடங்கள் என எరுத்துக்
    கொள்ளப்படிம், எனில்
```

 (i) சேவையைப் பெறுவதற்கு வந்த
 வாடிக்கையாளர்கள் காத்திருக்கும் நேரத்தின்
 நிகழ்தகவு
 (ii) அமைப்பில் சராசரியாக உள்ள வாடிக்கையாளர்களை கண்டிறிக.
(iii) சாடிக்கையாளர்கள் சூப்பர் மார்கெட்டில் செலவழிக்கும் சராசாி நேரம் ஆகியவற்றைக் காண்க.

A super market has two girls serving at the counters. The customers arrive in a Poisson fashion at the rate of 12 hour. The service time for each customer is exponential with mean 6 minutes. Find
(i) The probability that an arriving customer has to wait for service
(ii) The average number of customers in the system, and
(iii) The average time spent by a customer in the super-market.

Page 19 Code No. : 30591 B
19. (அ) ஒரு சிறிய திட்டம் ஏழு நிகழ்தகவுகளை உள்ளடக்கியது, அவை தொடர்பான தரவுகள் கீழே கொடுக்கப்பட்டுள்ளன.
நிகழ்வுகள் முந்றதய நிகழ்வுகள் நிகழ்வுக்கான காலம் (நாட்கள்)
A
4
$\begin{array}{lll}\text { B } & -\end{array}$
C - 6
D A,B 5
$\begin{array}{lll}\mathrm{E} & \mathrm{A}, \mathrm{B} & 7\end{array}$
F C,D,E 6
G C,D,E 4
(i) நெட்வெர்கிளை வரைக மற்றும் திட்ட முழுமைக்காலத்தினைக் காண்க.
(ii) ஒவ்வொரு நிகழ்வுகளுக்குமான மொத்த மிதவையைக் கணக்கிடுக, மற்றும் முக்கயிமான பாதையை முன்னிலைப் படுத்தவும்.

A small project consists of seven activities for which the relevant data are given below:
Activity Preceding activity Activity duration
(Days)
A - 4
$\begin{array}{lll}\mathrm{B} & - & 7\end{array}$
$\begin{array}{lll}\text { C } & - & 6\end{array}$
D A,B 5
Page 20 Code No. : 30591 B

நிகழ்வு உடனடி கணிக்கப்பட்ட காலம் (நாட்கள்) முன்னோடி

$$
\begin{array}{lcc}
\text { நம்பிக்கை } & \text { மிகவும் } & \text { அவ } \\
& \text { விரும்பிய } & \text { நம்பிக்க }
\end{array}
$$

E	B	2	5	14
F	C	2	5	8
G	D,E	3	6	15
H	F,G	1	2	3

(i) PERT- ஐ வரைய மற்றும் எதிர்பார்க்கப்பட்ட திட்ட நிறைவு காலத்தினையும் காண்க.
(ii) நிகழ்வு F -ன் சராசரி காலம் 14 நாட்கள் அதிகாித்தால் 95\% நிச்சியத்தன்மை உடைய எதிர்பார்க்கப்பட்ட திட்டத்தின் காலத்தில் ஏற்படும் தாக்கம் என்ன. ($\mathrm{z}=1.465$, $p(0 \leq \geq \leq 1.645=0.45)$

A project consists of eight activities with the following relevant information.
Activity
Immediate
Estimated duration (days)
Optimistic Most likely Pessimistic

A	-	1	1	7
B	-	1	4	7
C	-	2	2	8
D	A	1	1	1
E	B	2	5	14

Page 22 Code No. : 30591 B

Activity	Immediate	Estimated duration (days)		
		Optimistic	Most likely	Pessimistic
F	C	2	5	8
G	D,E	3	6	15
H	F,G	1	2	3

(i) Draw the PERT and find out the expected project completion time.
(ii) What duration will have 95% confidence for project completion?
(iii) If the average duration for activity F increase to 14 days, what will be its effect on the expected project completion time which will have 95% confidence? (For $\quad \mathrm{z}=1.465$, $p(0 \leq \geq \leq 1.645=0.45)$
20. (அ) பற்றாக்குறை இல்லத நிர்ணய கரக்கு கணக்குகளில், மொத்த சரக்கு செலவு குறைக்கப்படும் போது, உகந்த பொருளாதார ஒழுங்கு அளவினை (EOQ) தீர்மானிக்கவும் மேலும் அதன் பண்புகளைப் பெறுக. Determine an optimum economic order quantity (EOQ) when the total inventory cost is minimized for the deterministic inventory problem with no shortages. Also obtain its characteristics.

Or

Page 23 Code No. : 30591 B
(ஆ) பற்றாக்குறை இல்லாத நிர்ணய சரக்கு கணக்குகளில் வரையறுக்கப்பட்ட நிரப்புதலுடன் கூடிய உகந்த பொளாதார ஒழுங்கு அளவினை (EOQ) தீர்மானிக்கவும். மேலும் அதன் பண்புகளைப் பெறுக.

Determine an optimum economic order quantity (EOQ) for the problem with finite replenishment production. Also obtain its characteristic.

Page 24 Code No. : 30591 B

Reg. No. :

Code No. : 30591 E Sub. Code : SEMA 6 D

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics
Major Elective - IV : OPERATIONS RESEARCH-II
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
SECTION A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. When maxmin and minmax values of the game are same, than
(a) There is a saddle point
(b) Solution does not exist
(c) Strategies are mixed
(d) Infinite solution
2. Games which involve more than, two players are called
(a) Biased games
(b) Negotiable games
(c) Conflicting games
(d) n -person games
3. The problem of replacement is not concerned about the
(a) Items are deteriorate graphically
(b) Items that fails suddenly
(c) Determination of optimum replacement interval
(d) Maintenance of an item to work out profitability
4. When time value of money is considered
(a) Cost need to be discounted
(b) Timing of incurrence of costs in important
(c) The present value factors serve as the weights
(d) All of the above

Page 2 Code No. : 30591 E
5. Which of the following is not correct?
(a) Queuing theory deals with situations where customers arrive, wait for the service, get the service and leave the system
(b) Customers, in queuing theory might include humans, machines, ships, letters and so on
(c) A queue refers to physical presence of the customers waiting to be served.
(d) A study of queuing theory help the manager to establish an optimum level of service
6. Multiple serves may be
(a) In parallel
(b) In series
(c) In combination of parallel and series
(d) All of the above
7. In critical path analysis, the word CPM means
(a) Critical Path Method
(b) Crash Project Management
(c) Critical Project Management
(d) Critical Path Management

Page 3 Code No. : 30591 E
8. The term commonly used for activity stack time is
(a) Free float
(b) Independent float
(c) Total float
(d) All of the above
9. Inventories in general are build up
(a) Satisfy demand during period of replenishment
(b) Carry reserve stocks to avoid shortages
(c) Keep place with changing market conditions
(d) All of the above
10. Which cost can very with order quantity?
(a) Unit cost only
(b) Holding cost only
(c) Re-order cost only (d) All of these SECTION B - ($5 \times 5=25$ marks $)$

Answer ALL questions, choosing either (a) or (b).
11. (a) Consider the game with the following payoff matrix

Player B

$$
\text { Player A }\left(\begin{array}{ll}
5 & 0 \\
0 & 2
\end{array}\right)
$$

Show that the game is strictly determinable. Also find the value of the game. Or

Page 4 Code No. : 30591 E
(b) For the game with the following payoff matrix determine the optimum strategies and the value of the game

$$
\begin{gathered}
P_{2} \\
P_{1}\left(\begin{array}{ll}
5 & 1 \\
3 & 4
\end{array}\right)
\end{gathered}
$$

12. (a) Machine A costs Rs.9,000. Annual operating cost are Rs. 200 for the first year, and the increase by Rs.2,000 every year. Determine the best age at which to replace the machine. If the optimum replacement policy is followed, what will be the average yearly cost of owning and operating the machine?

Or
(b) Explain individual replacement policy.
13. (a) A road transport company has one reservation clerk on duty at a time. He handles information of bus schedules and makes reservations. Customers arrive at a rate of 8 per hour and the clerk can service 12 customers on an average per hour. After stating your assumptions, answers the following.

Page 5 Code No. : 30591 E
(i) What is the average number of customers waiting for the service of the clerk?
(ii) What is the average time a customer has to wait before getting service?

Or
(b) Assume that the goods trains are coming in a yard at the rate of 30 trains per day and suppose that the inter arrival times follow an exponential distribution. The service time for each train is assumed to be exponential with an average of 36 minutes. If the yard can admit 9 trains at a time (there being 10 lines, one of which is reserved for shunting purpose), calculate the probability that the yard is empty and find the average queue length.
14. (a) Find the critical path and duration of project:

Activity :	A	B	C	D	E	F	G	H	I	J
Predecessor :	-	-	A	B	C,D	C,D	E	E	F,G	H,I
Duration (days)	4	6	9	7	4	4	3	6	9	4
	Or									

Page 6 Code No. : 30591 E
(b) A project has the following time schedule :
$\begin{array}{lllllll}\text { Activity } & 1-2 & 1-3 & 1-4 & 2-5 & 3-6 & 3-7\end{array}$
$\begin{array}{lllllll}\text { Time in week } & 2 & 2 & 1 & 4 & 8 & 5\end{array}$
$\begin{array}{llllll}\text { Activity } & 4-6 & 5-8 & 6-9 & 7-8 & 8-9\end{array}$
Time in week $\begin{array}{llllll}3 & 1 & 5 & 4 & 3\end{array}$
Construct PERT network and compute the critical path and its duration.
15. (a) An oil engine manufacturer purchases lubricants at the rate of Rs. 42 per piece from a vender. The requirements of these lubricants is Rs.1,800 per year. What should be the order quantity per order, if the cost per placement of an order is Rs. 16 and inventory carrying charge per rupee per year is only 20 paise.

Or

(b) A contractor has to supply 10,000 bearing per day to an automobile manufacturer. He find that, when he starts a production run, he can produce 25,000 bearing per day. The cost of holding a bearing in stock for one year is Rs. 2 and the set up cost of a production run is Rs. 1,800 . How frequently should production run be made?

Page 7 Code No. : 30591 E

$$
\text { SECTION C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) Solve the following 2×4 game graphically :

\[

\]

(b) Solve the game whose payoff matrix is given below :
$\left.\begin{array}{c}B_{1} \\ A_{1} \\ A_{2}\end{array} B_{3} \begin{array}{c}B_{4} \\ A_{3}\end{array} \begin{array}{cccc}4 & -2 & 3 & -1 \\ -1 & 2 & 0 & 1 \\ -2 & 1 & -2 & 0\end{array}\right)$
17. (a) Let the value of money be assumed to be 10% per year and suppose that machine A is replaced after 3 years whereas machine B is replaced after every six years. The yearly costs of both the machines are given below :

Year :	1	2	3	4	5
Machine A :	1000	200	400	1000	200
Machine B :	1700	100	200	300	400

Determine which machine should be purchased.

Or

Page 8 Code No. : 30591 E
(b) The following failure rates have been observed for a certain type of transistors in a digital computer:

| End of the | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

week:
$\begin{array}{lllllllll}\text { Probability } & 0.05 & 0.13 & 0.25 & 0.43 & 0.68 & 0.88 & 0.96 & 1.00\end{array}$ of failure rate :

The cost of replacing an individual failed transistor is Rs.1.25. The decision is made to replace all these transistors simultaneously at fixed intervals and to replace the individual transistors as they fail in service. If the costs of group replacement in 30 paise per transistor, what is the best interval between group replacement?
18. (a) The rate of arrival of customers at a public telephone both follows Poisson distribution with an average time of 10 minutes between one customer and the next. The duration of a phone call is assumed to follow exponential distribution, with mean time of 3 minutes.
(i) What is the probability that a person arriving at the both will have to wait?
(ii) What is the average length of the nonempty queues that form from time to time?
(iii) The Mahanagar telephone Nigam Ltd. will install a second booth when it is convinced that the customers would

Page 9 Code No. : 30591 E
except waiting for at last 3 minutes for their turn to make a call. By how much time should the flow of customers increase in order to justify a second booth estimate the fraction of a day the phone will be in.
(iv) What is the probability that it will take him more than 10 minutes altogether to wait for phone and complete his call?

Or
(b) A super market has two girls serving at the counters. The customers arrive in a Poisson fashion at the rate of 12 hour. The service time for each customer is exponential with mean 6 minutes. Find
(i) The probability that an arriving customer has to wait for service
(ii) The average number of customers in the system, and
(iii) The average time spent by a customer in the super-market.
19. (a) A small project consists of seven activities for which the relevant data are given below:
Activity Preceding activity Activity duration (Days)
A - 4
$\begin{array}{lll}\mathrm{B} & - & 7\end{array}$

Page 10 Code No. : 30591 E

Activity Preceding activity Activity duration (Days)

C	-	6

D
A,B
5
E
A,B
7
F
G
C,D,E
6
C,D,E
4
(i) Draw the network and find the project completion time.
(ii) Calculate total float for each of the activities and highlight the critical path.

Or

(b) A project consists of eight activities with the following relevant information.

Activity	Immediate	Estimated duration (days)		
		Optimistic	Most likely	Pessimistic
A	-	1	1	7
B	-	1	4	7
C	-	2	2	8
D	A	1	1	1
E	B	2	5	14
F	C	2	5	8
G	D,E	3	6	15
H	F,G	1	2	3

Page 11 Code No. : 30591 E
(i) Draw the PERT and find out the expected project completion time.
(ii) What duration will have 95% confidence for project completion?
(iii) If the average duration for activity F increase to 14 days, what will be its effect on the expected project completion time which will have 95% confidence? (For $\quad \mathrm{z}=1.465$, $p(0 \leq \geq \leq 1.645=0.45)$
20. (a) Determine an optimum economic order quantity (EOQ) when the total inventory cost is minimized for the deterministic inventory problem with no shortages. Also obtain its characteristics.

Or
(b) Determine an optimum economic order quantity (EOQ) for the problem with finite replenishment production. Also obtain its characteristic.
(8 pages)
Reg. No. : \qquad

Code No. : 30592 E Sub. Code : SEMA 6 E

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics - Main
Major Elective - IV — CODING THEORY
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks

$$
\text { SECTION A - (10 } \times 1 \text { = } 10 \text { marks })
$$

Answer ALL questions.
Choose the correct answer:

1. The total number of words of length n is - .
(a) n
(b) 2 n
(c) 2^{n-1}
(d) 2^{n}
2. The maximum number of code words of length $n=4$ in a code in which any single error can be detected is \qquad
(a) 6
(b) 8
(c) 12
(d) 16
3. The distance of a linear code is the weight of the non zero codeword of \qquad length.
(a) non zero
(b) most
(c) least
(d) zero
4. The number of different bases for k^{2} is -
(a) 1
(b) 3
(c) 2
(d) 4
5. The equivalent code of $c=\{000,100,001,101\}$ is
(a) $\{000,100,010,110\}$
(b) $\{001,100,010,110\}$
(c) $\{000,010,001,110\}$
(d) $\{001,010,100,110\}$
6. The distance of a linear code is the weight of any non zero code word.
(a) half of
(b) two times
(c) maximum
(d) minimum

Page 2 Code No. : 30592 E
7. The upper bound for the dimension 3 of a linear code of length 6 is \qquad
(a) 4
(b) 2
(c) 8
(d) 6
8. The distance of the extended Golay code C_{24} is
(a) 2
(b) 4
(c) 6
(d) 8
9. If $f(x)=1+x+x^{3}+x^{4}$ and $g(x)=1+x^{2}+x^{4}$ be the polynomials in $k[x]$, then $f(x)+g(x)=$
(a) $x^{2}+x^{3}+x^{4}$
(b) $1+x+x^{2}$
(c) $x+x^{2}+x^{4}$
(d) $x+x^{2}+x^{3}$
10. The cycle shift of the word $U=10110$ is
(a) 01101
(b) 01011
(c) 10101
(d) 11010

$$
\text { SECTION B }-(5 \times 5=25 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 words.
11. (a) Let C be the code of all words of length 3. Determine which code word was most likely sent if 001 is received. Add a parity check digit to the code words of C.

Or
Page 3 Code No. : 30592 E
(b) Calculate $\phi_{0.97}(v, w)$ for each of the following pairs of v and w :
(i) $\quad v=01101101, w=1000110$
(ii) $v=00101, w=11010$
(iii) $v=10110, w=01001$
12. (a) Prove that a linear code of dimension k contains precisely 2^{k} code words.

Or
(b) If G is a generator matrix for a linear code C of length n and dimension k, then prove that $v=u G$ ranges over all 2^{k} words in C as n ranges over all 2^{k} words of length k.
13. (a) Let C be a linear code with parity-check matrix.
$H=\left[\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$. Find
(i) a generator matrix for C^{\perp},
(ii) a generator matrix for C.

Or
(b) List all the cosets of the linear code $C=\{0000,1011,0101,1110\}$.

Page 4 Code No. : 30592 E
[P.T.O.]
14. (a) Can there exist perfect codes for the values $n=23$ and $d=7$.

Or

(b) Find generating and parity-check matrices of an extended Hamming code for a linear code with generator matrix.

$$
G=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] .
$$

15. (a) For a cyclic code $C=\{0000,1010,0101,1111\}$, find the generator polynomial $g(x)$ and then represent each word as a multiple of $g(x)$.

> Or
(b) Find a basis and generating matrix for the linear cyclic code of length $n=7$ with generator polynomial $g(x)=1=x+x^{3}$.

$$
\text { SECTION C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 600 words.
16. (a) Explain why a channel with $p=0$ is unintervesting.

Or
Page 5 Code No. : 30592 E
(b) Let C be the code of all words of length 3 . Add a parity-check digit to the code words in C and use the resulting code to answer the following questions.
(i) If 1101 is received can we detect an error?
(ii) If 1101 is received what code words were most likely to have been transmitted?
(iii) If any word of length 4 that is not in the code, closed to a unique code word?
17. (a) Develop the algorithms to find bases for a linear code and its dual.

Or
(b) Find a generator matrix for the linear code generated by each of the following sets. Give the parameters (n, k, d) for each code.
(i) $S=\{11111111,11110000,11001100$,

10101010\}
(ii) $S=\{100100100,010010010,001001001$,

1111111111\}
(iii) $S=\{101101,011010,110111,000111$,
$110000\}$.

Page 6 Code No. : 30592 E
18. (a) If C is a linear code of length n and dimension k with generator matrix G in standard form, then prove that the first k digits in the code word $v=u G$ form the word u in K^{k}.

> Or
(b) For each of the following codes, use SDA to decode the given received words.
(i) $\mathrm{C}=\{0000,1001,0101,1100$
(1) $w=1110$,
(2) $\quad w=1001$, (3) $w=0101$
(ii) $C=\{111000,001110,100011\}$
(1) $w=101010$, (2) $w=011110$, $w=011001$
19. (a) What is a lower and an upper bound on the size or the dimension k of a code with $n=9$ and $d=57$?

Or

(b) List seven important facts about the extended Golay code C_{24} with generator matrix $G=[I, B]$.

Page 7 Code No. : 30592 E
20. (a) $g(x)=1+x^{4}+x^{6}+x^{7}+x^{8}$ generates a 2 errorcorrectly linear cyclic code C of length 15 . Use decoding linear cyclic codes algorithm, decode the received word $w=110011100111000$ that were encoded using C.

Or
(b) Prove that every cyclic code contains a unique idempotent polynomial which generates the code.

Page 8 Code No. : 30592 E
\qquad

Code No. : 30593 E Sub. Code : SEMA 6 F

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester
Mathematics
Major Elective IV - PROGRAMMING IN C
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. C Programs are converted into machine language with the help of
(a) An Editor
(b) A Compiler
(c) An Operating System
(d) None of the above
2. Every program statement must terminated with
(a) Colon
(b) Semicolon
(c) Underscore
(d) Comma
3. Which operator from the following has the lowest priority?
(a) assignment
(b) division
(c) comma
(d) conditional
4. Relational operators cannot be used on
(a) Structure
(b) Long
(c) String
(d) Float
5. Which of the following cannot be checked in a switch case statement?
(a) character
(b) integer
(c) float
(d) enum
6. - statement is used to exit the switch statement.
(a) If
(b) Break
(c) Else
(d) Nested

Page 2 Code No. : 30593 E
7. Set of consecutive memory locations is called as
(a) loop
(b) array
(c) pointer
(d) function
8. The maximum number of dimension an array can have in C is \qquad
(a) 3
(b) 4
(c) 5
(d) Compiler dependent
9. A function which calls itself is called a function.
(a) self
(b) auto
(c) recursive
(d) static
10. How many functions are required to create recursive functionality?
(a) one
(b) two
(c) more than two
(d) none of the above

$$
\text { PART B }-(5 \times 5=25 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 words.
11. (a) Explain in detail about constants with example.

Or
(b) Describe about C character set with example.

Page 3 Code No. : 30593 E
12. (a) Write a brief account on special operators.

Or
(b) Write a C program to calculate factorial of a given number.
13. (a) Explain in detail about switch statement with example.

Or
(b) Write a brief note on formatted input with example.
14. (a) Write a C program to print the numbers in ascending order.

Or
(b) Describe in detail about string handling functions with example.
15. (a) Define function. Discuss about functions with example.

Or
(b) Write a brief note on Recursion.

Page 4 Code No. : 30593 E
[P.T.O.]

PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 600 words.
16. (a) Describe in detail about data types with example.

Or
(b) Write a brief account on assigning values to variables with example.
17. (a) Elaborate note on operators and its types with example.

Or
(b) Explain about precedence of arithmetic operators with example.
18. (a) Detail account on if statement and its types with example.

Or
(b) Discuss about looping statements with example.
19. (a) Illustrate about two dimensional arrays with example.

Or
(b) Describe in detail about reading strings from terminal.

Page 5 Code No. : 30593 E
20. (a) Explain in detail about category of functions with example.

Or
(b) Write a brief account on scope, visibility and lifetime of variables.

Page 6 Code No. : 30593 E
\qquad
B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2020 SIXTH SEMESTER

Mathematics
Major Elective OPERATION RESEARCH - II
(For those who joined in July 2017 onwards)
Time: Three hours
Maximum: 75 marks

Part A (10 $\times 1=10$ Marks)

Answer all Questions, Choose the correct answer

1. இரு நபi் - பஜ்ஜிய தொகை விளையாட்டு என்பதன் பொருள்
(அ) விளையாடுபவா் ஒருவி்ன் நஷ்ட தொகையானது மற்றறாரு விளையாடுபவாின் இலாபத் தொகைக்கு சமம்
(ஆ) விளையாடுபவா் ஒருவாின் நஷ்ட தொகையானது மற்றறாரு விளையாடுபவாின் இலாபத் தொகைக்கு சமமில்லை.
(இ) (அ) மற்றும் (ஆ)
(ஈ) மேற்கண்ட எதுவுமில்லை

Two person Zero - sun game means that the
a) Sum of losses to one player is equal to the sum of gains to other
b) Sum of losses to one player is not equal to the sum of gains to other
c) Both (a) and (b)
d) None of the above
2. கலப்பு தந்திர விளையாட்டின் தீாவானது
(அ) இயற்கணி் முறை
(ஆ) அணி முறை
(இ) வரைபட முறை
(ஈ) மேற்கண்ட அனைத்தும்

A mixed strategy game can be solved by \qquad
(a) algebraic method
(b) matrix method
(c) graphical method
(d) all of the above
3. மாற்றுச் செலவு கணிப்பு மற்றும் உறுதியான பொருளாதார மாற்றுக் கொள்கை சம்பந்தப்பட்டது என்ன?
(அ) தேடல் கோட்பாடு
(ஆ) மாற்றுக் கோட்பாடு
(இ) நிகழ்தகவு கோட்பாடு
(ஈ) ழேற்கண்ட அனைத்தும்
What is concerned with the prediction of replacement costs and determination of the most economic replacement policy?
(a) Search Theory
(b) Theory of replacement
(c) Probabilistic Programming
(d) none of the above

4: மாற்று மாதிாி மாதிரி
(அ) நிலையான மாதிாி
(ஆ) டைனமிக் மாதிரி
(இ) (அ) மற்றும் (ஆ)
(ஈ) உூற்கண்ட எதுவுமில்லை

Page No. 2
Continuation Sheet
Replacement model is a------------------------ model
(a) Static Model
(b) Dynamic Model
(c) Both (a) and (b)
(d) none of the above
5. ஒரு வாிசயயின் அளவானது n-க்குஅதிகமாகவோ அல்லது சமமாகவோ இருப்பதற்கான நிகழ்தகவு.
அ) $\frac{\rho}{1-\rho}$.
ஆ) ρ^{n}
() $1-\rho$
ஈ) $\frac{\rho}{1+\rho}$

Probability of queue size being greater than equal to n is
a) $\frac{\rho}{1-\rho}$
b) ρ^{n}
c) $1-\rho$
d) $\frac{\rho}{1+\rho}$
6. ஒரு ஒழுங்கு வாிசை முறையில் வருகை
அ) ஈருறுப்பு
ஆ) பாய்சான்
இ) இயல்நிலை
ஈ) அடுக்குக்குறி

In a queueing system arrival follows \qquad
a) binomial
b) poisson
c) normal
d) exponential
7. தீாமானப்பாதையில் (i, j) என்ற வேலை இருந்தால்.
அ) $E S_{i}>L S_{i}$
ஆ) $E S_{i}<L S_{i}$
இ) $E S_{i}=L S_{i}$
ஈ) $E S_{i}=2 L S_{i}$

In activity $(i ; j)$ is on the critical path, then
a) $E S_{i}>L S_{i}$
b) $E S_{i}<L S_{i}$
c) $E S_{i}=L S_{i}$
d) $E S_{i}=2 L S_{i}$
8. CPM - ல் வேலை நேரங்கள் சாா்ந்த வகைய்ானது.
அ) குறிப்பிட்ட மதிப்புடையது
ஆ) நம்பிக்கைவுடைமை
இ) நிகழ்தகவு சா்்ந்தது
ஈ) நம்பிக்கையின்மை

In CPM, the task times are
a) deterministic
b) optimistic
c) probabilistic
d) pessimistic
9. பற்றாக்குறையுடன் உள்ள EOQ கணக்கில் மறுதேவை அளவு
அ) $Q_{1}{ }^{\circ}-Q^{o}$
ஆ) $Q^{\circ}-Q^{o}$
Д) $Q_{0}{ }^{\circ}-Q_{1}{ }^{\circ}$
ஈ) $\frac{Q^{0}-Q_{1}{ }^{0}}{2}$

In EOQ problem with shortages reorder level is
a) $Q_{1}{ }^{0}-Q^{o}$
b) $Q^{o}-Q^{o}$
c) $Q_{0}{ }^{\circ}-Q_{1}{ }^{\circ}$
d) $\frac{Q^{0}-Q_{1}{ }^{0}}{2}$
10. மிகச்சிறிய முழுவருட கையிருப்பு செலவை காணும் சூத்திரம் யாது?
அ) $\sqrt{\frac{2 C_{s}}{D C_{1}}}$
ஆ) $\sqrt{\frac{D C_{1}}{2 C_{s}}}$
இ) $\sqrt{2 D C_{1} C_{2}}$
स) $\sqrt{\frac{D}{2 C_{s C_{1}}}}$

Minimum total annual inventory cost is given by the formula
a) $\sqrt{\frac{2 C_{s}}{n c_{.}}}$
b) $\sqrt{\frac{D C_{1}}{2 C_{c}}}$
c) $\sqrt{2 D C_{1} C_{2}}$
d) $\sqrt{\frac{D}{2 C_{s C_{1}}}}$

11. அ) க்ழே கொடுக்கப்பட்டுள்ள அணி இருநபi்கள் P_{1} பந்ம் P_{2} எவ்பவருக்கும்

$$
P_{1}\left[\begin{array}{cccc}
8 & 15 & -4 & -2 \\
19 & 15 & 17 & 16 \\
0 & 20 & 15 & 5
\end{array}\right]
$$

The following matrix represents the payoff to P_{1} in a rectangular game between two persons P_{1} and P_{2}.

$$
\begin{gathered}
P_{2} \\
P_{1}\left[\begin{array}{ccc}
8 & 15 & -4 \\
19 & 15 & 17 \\
0 & 16 \\
0 & 20 & 15 \\
\hline
\end{array}\right] \\
\text { (அல்லது) }
\end{gathered}
$$

ஆ) வரைபடம் மூலம் தீாக்க.
விளையாடுபவ்ா A வி円ையாடுபவா் $B\left[\begin{array}{cccc}2 & 2 & 3 & -2 \\ 4 & 3 & 2 & 6\end{array}\right]$
Solve by graphical method Player A
Player B $\left[\begin{array}{cccc}2 & 2 & 3 & -2 \\ 4 & 3 & 2 & 6\end{array}\right]$
12. அ) ஒரு இயந்திரத்தின் விலை கூபாய் 6100 அதன் ஸ்கிராப் மதிப்பு ரூபாய் 100. அதன் பராமரிப்பு செலவு அதன் பயன்பாட்டின் அடிப்படையில் கீழே் costs found from experience are as follows.

Year	1	2	3	4	5	6	7	8
Maintenance cost (in Rs.)	100	250	400	600	900	120 0	1600	2000

When should the machine be replaced?
(அல்லது)
ஆ) இயந்திரம் A-uின் ஒவ்வொரு ஆண்டி்்கான இயக்க செலவு மற்றுப் மறுவிற்பன விலை கீழே கொடுக்கப்பட்டுள்ளது. அற்த இயந்திதத்தின் வாங்கிய விலை .ரூபாய் 10000 . அந்த இயந்திரத்ணை மாற்றற உகந்த நேரம் எது?

ஆண்டு	1	2	3	4	5	6	7	
இயக்க (eூ)	செலவு	1,500	1,900	2,300	2,900	3,600	4,500	5,500
மறுவிறிற்பை விலை (கூ)	5,000	2,500	1,250	600	400	400	400	

The data on the operating costs per year and resale price of equipment A whose purchase price is Rs. 10,000 are given below.

Year	contimation shoet		2	3	4	5	6
Operating (Rs.)	cost	1,500	1,900	2,300	2,900	3,600	4,500
Resale value (Rs.)	5,000	2,500	1,250	600	400	400	400

What is the optimum period for replacement?
13. அ) $\lambda=6, \quad \mu=12, \quad N=3$ ศனில் $E(n), E(w), E(m)$ ஆகியவற்றறக் காண்க.

$$
\text { If } \lambda=6, \mu=12, N=3 \text { find } E(n), E(w) \text { and } E(m) .
$$

(அல்லது)
ஆ) $\quad(M / M / 1):(\infty / F C F S)$ மாதிிியில், ஒழுங்குவரிணை முறையில் வாடிக்கையாளா்களின் சராசரி எண்ணிக்கையை காணும் சூத்திரத்றை வருவி.

In the $(M / M / 1):(\infty / F C F S)$ for the formula for finding the average number of customers in the system.
14. அ) கீழே உள்ள வலைபின்னலுக்கு தீாமானிக்கும் பாதையைக் காண்க.

Find the critical path for the network given below.

ஆ) கீழ்கண்ட கட்டுப்பாடுகளுக்கு உட்பட்ட ஒரு வலைப்பின்னல் வரைபடம் வரைக.
B<E, F:C $<\mathrm{G}, \mathrm{L} ; \mathrm{E}, \mathrm{G}<\mathrm{H} ; \mathrm{L}, \mathrm{H}<\mathrm{I} ; \mathrm{L}<\mathrm{M} ; \mathrm{H}<\mathrm{N} ; \mathrm{H}<\mathrm{J} ; \mathrm{I}, \mathrm{J}<\mathrm{P} ; \mathrm{P}<\mathrm{Q}$
Construct the network diagram for the following constraints.
B $<\mathrm{E}, \mathrm{F} ; \mathrm{C}<\mathrm{G}, \mathrm{L} ; \mathrm{E}, \mathrm{G}<\mathrm{H} ; \mathrm{L}, \mathrm{H}<\mathrm{I} ; \mathrm{L}<\mathrm{M} ; \mathrm{H}<\mathrm{N} ; \mathrm{H}<\mathrm{J} ; \mathrm{I}, \mathrm{J}<\mathrm{P} ;$
P $<$ Q
15. அ) ஒரு குறிப்பிட்ட பொருளானது வருடத்திற்கு 18,000 அலகுகள் தேவைப்படுகின்றுன. சேகாிப்பி்கான செலவு ரூ. 400 மற்றும் கையிருப்பு செலவு வருடத்திற்கு பொருளுக்கு ரூ. 1.20 மாற்றி அமைத்தல் உடனடியாக ஆனால் பற்றாக்குறை இல்லாமல் அனுமதிக்கப்படுகிறது ศனில்.
i. பொருளாதார பங்கு அளவு.
ii. வருடத்திற்கு வரவழைக்கும் பொருள்களின் எண்ணிக்கை.
iii. வாிசைகளுக்கு இடைப்பட்ட நநரம்.
iv. ஒரு பொருளுக்கான விலை ரூ. 1 எனில் வருடத்திற்கு மொத்த விலை ஆகியவற்றைக் காண்க.
The demand for a particular item is 18,000 units per year. The holding cost per unit is Rs. 1.20 per year and the cost of one procurement is Rs. 400 . No shortages are allowed and the replacement rate is instantaneous.

Determine:
i. Optimum order quantity
ii. Number of orders per year.
iii. Time between orders and
iv. Total cost per year when the cost of one unit is Re. 1

(அல்லது)

ஆ) கையிருப்பின் வ்கைகள் யாவை? அவைகள் ஏன் வைத்திருக்கப்படுகிறது? What are the types of inventory? Why they are maintained?
16. அ) மேலே கொடுக்கப்பட்டுள்ள விளையாட்டினைத் தீாக்க.

Player A	Player B						
	I	II	III	IV	\mathbf{V}	VI	
1	4	2	0	2	1	1	
2	4	3	1	3	2	2	
3	4	3	7	-5	1	2	
4	4	3	4	-1	2	2	
5	4	3	3	-2	2	2	

Solve the following game.

Player A	Player B						
	I	II	III	IV	V	VI	
1	4	2	0	2	1	1	
2	4	3	1	3	2	2	
3	4	3	7	-5	1	2	
4	4	3	4	-1	2	2	
5	4	3	3	-2	2	2	

(அல்லது)
ஆ) கீழே. கொடுக்கப்பட்டுள்ள அணியினை நோியல் நிரலாக்க முறையில் தீாக்க.

விளையாடுபவா் B
விளையாடுபவा $A\left[\begin{array}{ccc}-1 & 1 & 1 \\ 2 & -2 & 2 \\ 3 & 3 & -3\end{array}\right]$
Solve the following game by linear programming.
Player B

$$
\text { Player A }\left[\begin{array}{ccc}
-1 & 1 & 1 \\
2 & -2 & 2 \\
3 & 3 & -3
\end{array}\right]
$$

17. அ) ஒரு இயந்திரத்தின் விலை ரூபாய் 10000 அதன் இயக்க செலவு முதல் 5 ஆண்டுகளுக்கு ரூபாய் 500. 6-வது ஆண்டு மற்றும் அதன் பின் வரும் வருடங்களில் இயக்க செலவு ரூபாய் 100 அதிகாிக்கிறது. வருட தள்ளுபடி தொகை 10% என எடுத்துக் கெொண்டால் எந்த உகந்த நேரத்தில் இயந்திரத்தை மாற்ற வேண்டும்.

A machine costs Rs. 10,000 . Operating costs are Rs. 500 per year for the first five years. In the sixth and succeeding years operating cost increases by Rs. 100 per year. Assuming a 10% discount rate of money per year, find the optimum length of time to hold the machine before we replace it?
(அல்லது)
ஆ) ஒரு உற்பத்தியாளா் இரு இயந்திரந்கள் A ழற்றுறும் B ゅை வழங்குகிறிாா். A -யின் மதிப்பு ரூ. 5000 மற்றும் அதன் இயக்க செலவு முதல் 5 ஆண்டுகளுக்கு ๘ூ. 800 எனவும் 6-வது ஆண்டு மற்றும் அதன் பிண் வரும் வருடங்களில் ரு. 200 அதிகாிக்கிறது. இயந்திரம் B-யின் கொள்ளளவு A ணை போன்றது அதன் மதிப்பு ரூ. 2500 மற்றும் அதன் இயக்க செலவு முதல் 5 ஆண்டுகளுக்கு ரூ. 1200 எனவும் 6 -வது ஆண்டு மற்று|ம் அதன் பின் வரும் வருடங்களில் ரூ. 200 அதிகரிக்கிறது. பணத்திள் வருட மதிப்பு 10% எனில் எந்த இயந்தித்தை வாங்க வேண்டும்.
A manufacturer is offered two machines A and B. A is priced at Rs. 5,000 and running costs are estimated at Rs. 800 for each of the first five years, increasing by Rs. 200 per year in the sixth and subsequent years Machine B, which has the same capacity as A, costs Rs. 2,500 but will have running costs of Rs. 1,200 per year for six years, increasing by Rs. 200 per year thereafter.

If money is worth 10% per year, which machine should be purchased?
18. (a) ஒரு தொலைபேசி சாவாயில் வருகை பாய்சான் முறறையில் சராசாி இடைவருகை நேரம் 5 நிமிடம் என்றுவாறு உள்து. ஒரு தொலைபேசி அழைப்பிண் சராசசி நேரும் 2 நிமிடங்களுடன் அடுக்குக்குறி பரவலில் அமைந்து இருக்கிறது என்றால்.

1. புதிதा்க வருபவiா தொலைபேசிக்காக காத்திருக்க வேண்டிய நிகழ்தகவு யாது?
2. சராசரியாக அந்த சாவஷியில் உள்ளவா்கள் எத்தணை போ்?
3. ஒருவருகை 10 நிம்டங்களுக்கு மேல் காத்திருக்க வேண்டியதன் நிகழ்தகவு என்ன?
Arrivals at a telephone booth are considered to be Poission with an average time of 5 minutes between one arrival and the next. The duration of the phone call is assumed to be distributed exponentially with mean 1 minutes.
4. What is the probability that a person arriving at a booth will have to wait?
5. Find the average number of persons in the system.
6. What is the probability that the waiting time is more than 10 minutes?
(b) ஒரு பல் பொருள் அங்காடியல்ல் ஒரு காசாளா் உள்ளா்் அவசர நேநத்தில் வ்டிக்கையாள்்களின் வருணை 1 மணி நேரத்திற்கு 20 வாடிக்கையாளா்கள். சரராசிியாக 1 மணி ढேநத்திற்கு 24 வடிக்கையாளா்களுக்கு காசாளரால் வேலை முடித்து கொடுக்கப்படுகிறது. ஒற்றறை சேவை வரியை மாதிிியின் சட்டதிட்டங்களை எடுத்துக் கொண்டால்
(i) காசாளா் வேலை இல்லாமல் இருப்பதற்கான நிகழ்தகவு என்ள?
(ii) வரிசை மாதிிியில் சராசிி வாடிக்கையாளர்களின் எண்ணிக்கை என்ன?
(iii) வரிசை மா்திிியில் சாராசரியாக வ்ாடிக்கையாளா்கள் செலவிடும் நேரம் என்ன?
(iv) விிசயில் காத்திருக்கும் வாடிக்கையாளா்களின் எண்ணிக்கை என்ன?
(v) வாிணையில் காத்திருக்கும் வாடி்கையாளா் சேவவக்காக காத்திருக்கும் சராாசி நேேம் எண்ன?

A departmental store has a single cashier. During the rush hours, customers arrive at a rate of 20 customers per hour. The average number of customers that can be processed by the cashier is 24 per hour. Assume that the conditions for use
(i) What is the probability that the cashier is idle?
(ii) What is the average number of customers in the queueing system ?
(iii) What is the average time a customer spends in the system?
(iv) What is the average number of customers in the queue?
(v) What is the average time a customer spends in the queen waiting time for service?
19. (a) கூட்டமைப்பற்்கான விதியை விவரி. (OR)

Explain the rules of network construction.
(b) PERT - ன் படி முறற̣யை விளக்குக.

Write the algarithem for PERT?
20. (a) கையூருப்பினைக் கொள்வதில் உள்ள இலாபங்களைக் கூறுக.

What are the advantages of having inventory?
(அல்லது)
(b) ஒரு ஒப்பந்தக்காரi் ஒரு பொருளை நாள் ஒன்றுக்கு 20,000 அலகுகள் தரவேண்டும். அவரால் ஒரு நாணைக்கு 30,000 அலகுகள் தயாரிக்க இயலும். கையிருப்பல் வைத்திருக்க ஒரு அலகுக்கு ஆகும் செலவு ஒரு வருடத்திற்கு ரூ. 3, ஒவ்வொரு ஆட்டத்திற்குமாான நிலையாான செலவு ரூ. 50 எனில் எவ்வளவு மற்று|ம் எப்பபாருதெல்லாம் தயாரிக்கப்பட வேண்டும் என்பதைக் காண்க.

வ்லை குறைப்பிற்கான உற்பத்திளின் உத்தம விியை அளவைக் காண゙க. விலை (ரூபாய்)

$0 \leq Q_{1}<500$

$500 \leq Q_{2}<750$

$700 \leq Q_{3}$
மாதாந்திர தேவைக்கான உற்பத்தி 200 அலகுகள் அப்பொருளின் இடத்திற்கான செலவு ரூ 350 அதனை சேமித்து வைப்பதற்கான செலவு ஒரு அலகிற்கு 2%
(i) A contractor has to supply an article 20,000 units per day. He can produce 30,000 units per day. The cost of holding one unit in stock is Rs. 3 per year and the setup cost per run is R. 50 . How frequently and what size the product run be made? (ii) Find the optical order quality for a product for which the price breaker are as follows.

Quantity

$$
0 \leq Q_{1}<500
$$

Unit cost

$$
500 \leq Q_{2}<750
$$

Rs. 1000
Rs. 9.25
$700 \leq Q_{3}$
Rs. 8.75
The monthly demand for the product is 200 unit, the cost of storage is 2% of the unit cost and the cost of ordering is Rs. 350 .
\qquad

Code No. : 30593 E Sub. Code : SEMA 6 F

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2020.

Sixth Semester
Mathematics - Major Elective
PROGRAMMING IN C
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - (10 $\times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. In C, the first character of the variable should be
(a) an integer
(b) an alphabet
(c) a symbol
(d) All the above
2. Which of the following statement is wrong?
(a) $5+5=a ;$
(b) $\quad \mathrm{SS}=12.25$;
(c) $\mathrm{st}=$ ' m ' + 'b';
(d) is $=$ ' A ' +10 ;
3. What is the value of ! 0 ?
(a) 1
(b) 0
(c) -1
(d) 10
4. Hierarchy decides which operator
(a) is the most important
(b) operator on large numbers
(c) cannot be executed
(d) is used first
5. What function is appropriate for accepting a string?
(a) getch ()
(b) getche ()
(c) gets ()
(d) scanf ()
6. The loop for ($a=1 ; a<=5 ; a++$) will be executed for
\qquad times.
(a) 4
(b) 6
(c) 5
(d) Infinite loop
7. int $x[5]$; this array can hold values in between
\qquad to \qquad
(a) -32768 to 32767
(b) 0 to 255
(c) -65564 to 65563
(d) -65564 to 65564
8. \qquad copies one string to another
(a) $\operatorname{strstr}()$
(b) $\operatorname{strcpy}()$
(c) strcat ()
(d) $\operatorname{strcmp}()$
9. Following one keyword is used for function not returning any value
(a) void
(b) int
(c) auto
(d) None of the above
10. By default, function returns \qquad value
(a) binary
(b) integer
(c) float
(d) string

PART B $-(5 \times 5=25$ marks $)$
Answer ALL questions choosing either (a) or (b).
11. (a) Explain C keywords and identifiers.

Or
(b) How do you define symbolic constants? Explain.
12. (a) Explain arithmetic operators.

Or
(b) Discuss the bitwise operators.
13. (a) Explain If ELSE statement.

Or
(b) Write a program to find the sum of numbers upto 'n' term.
14. (a) Write a note on multi dimensional arrays.

Or
(b) Write a program to count the vowels present in a word

Page 4 Code No. : 30593 E
[P.T.O.]
15. (a) Discuss the need for user defined functions.

Or
(b) Write a program to find factorial of a number using recursion.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions choosing either (a) or (b).
16. (a) Discuss on declaration of storage classes.

Or
(b) Explain about declaring variables and constants.
17. (a) Describe the assignment, increment and decrement operators.

Or
(b) Explain the evaluation of expressions.
18. (a) Write a program to find the sum of prime numbers below 100 .

Or
(b) Explain
(i) WHILE statement
(ii) Do statement

Page 5 Code No. : 30593 E
19. (a) Describe the string handling function.

Or
(b) Write a program to sum the odd numbers present in an array.
20. (a) Discuss the scope, visibility and lifetime of a variable.

Or
(b) Write a program to convert decimal number to binary number using the function.

Page 6 Code No. : $\mathbf{3 0 5 9 3}$ E

Reg. No. :

Code No. : 30573 B Sub. Code : SMMA 41

B.Sc.(CBCS) DEGREE EXAMINATION,

 NOVEMBER 2020.Fourth Semester
Mathematics - Core
ABSTRACT ALGEBRA - I
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. $\quad\left(Q^{*}, \cdot\right)$ ல் 1ன் நேர்மாறு
(அ) -1
(ஆ) 0
(இ) 1
(ஈ) ∞

In the group $\left(Q^{*}, \cdot\right)$, the inverse of 1 is
(a) -1
(b) 0
(c) 1
(d) ∞
2. பின்வருவனவற்றுள் எது $\left(C^{*}, \cdot\right)$ யின் உட்குலம் இல்லை ?
(அ) $\{1, i,-1, i\}$
(ஆ) $\{1,-1\}$
(இ) $\{1\}$
(ஈ) $\{i,-i\}$

Which of the following are not subgroups of $\left(C^{*}, \cdot\right) ?$
(a) $\{1, i,-1, i\}$
(b) $\{1,-1\}$
(c) $\{1\}$
(d) $\{i,-i\}$
3. $\left(Z_{12}, \oplus\right)$ என்ற குலத்தில் உள்ள பிறப்பாக்கிகளின் எண்ணிக்கை
(அ) $1,2,3,4$
(ஆ) $1,3,6,9$
(இ) $1,5,7,11$
(ஈ) $2,3,5,7,11$

The set of all generators of group $\left(Z_{12}, \oplus\right)$ is
(a) $1,2,3,4$
(b) $1,3,6,9$
(c) $1,5,7,11$
(d) $2,3,5,7,11$
4. G என்பது ஓரு முடிவுறுகுலம். H என்பது G யின் உட்குலம் எனில், $O(H)$ ஆனது $O(G)$ ஐ வகுக்கும்.
(அ) லெக்ராஞ்சியின் தேற்றம்
(ஆ) பெர்மாட்டின் தேற்றம்
(இ) ஆய்லாின் தேற்றம்
(ஈ) கோஸியின் தேற்றம்

Page 2 Code No. : 30573 B
"If G is a finite group and H is any subgroup of G then the order of H divides the order of G ". This theorem is known as
(a) Lagrange's theorem
(b) Fermat's theorem
(c) Euler's theorem
(d) Cauchy's theorem
5. இரண்டு ஓற்றற வரிறை மாற்றத்தின் பெருக்கல் ஓர்
(அ) இரட்டை வாிசை மாற்றம்
(ஆ) சுழல்
(இ) ஓற்றை வாிசை மாற்றம்
(ஈ) இதில் எதுவுமில்லை
The product of two odd permutations is an
(a) even permutation
(b) cycle
(c) odd permutation
(d) none of these
6. $f:(Z,+) \rightarrow\left(C^{*}, \cdot\right)$ என்ற சார்பு $f(n)=i^{n}$ என்ற வரரயறுக்கப்பட்டுள்ளது எனில் f ஓரு
(அ) ஒன்ற்க்கொன்றான சார்பு
(ஆ) செயல்கோர்த்தல்
(இ) மேலான சார்பு
(ஈ) இவை எதுவுமில்லை
Page 3 Code No. : 30573 B

The map $f:(Z,+) \rightarrow\left(C^{*}, \cdot\right)$ given by $f(n)=i^{n}$ is
(a) one-one
(b) a homomorphism
(c) onto
(d) none of these
7. $(Q,+, 1)$ என்ற வ๓ளயத்தின் சிறப்பு எண்
(அ) 1
(ஆ) 0
(இ) முடிவுறாதது
(ஈ) 4

The characteristic of the ring ($Q,+, 1$) is
(a) 1
(b) 0
(c) infinite
(d) 4
8. ஒரு வளையம் பூலியன் வளையம் எனில் \qquad
(அ) $a^{2}=e$ அனைத்து $a \in R$ என்பது பெருக்கல் சமனி
(ஆ) $a^{2}=e$ அனைத்தும் $a \in R$
(இ) $a^{2}=0$ அனைத்தும் $a \in R$
(ஈ) $a^{n}=0$ ஏதேனும் $n \in R$
A ring is called a Boolean ring if
(a) $a^{2}=e$ for all $a \in R$, where e is the multiplicative identify
(b) $a^{2}=e$ for all $a \in R$
(c) $a^{2}=0$ for all $a \in R$
(d) $a^{n}=0$ for some $n \in R$
9. $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m} x^{m}$,
$q(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$ என்பவை $F[x]$ ன் உறுப்புகள். $p(x)=q(x)$ ஆக இருக்க தேவையான மற்றும போதுமான நிபந்தனை
(அ) $a_{i}>b_{i}, \forall i \geq 0$
(ஆ) $a_{i}=b_{i}, \forall i \geq 0$
(இ) $a_{i}=0=b_{i}, \forall i \geq 0$
(ஈ) $a_{i} \neq b_{i}$
$p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m} x^{m}$,
$q(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$ are defined in $F[x]$. Then the sufficient and necessary condition for $p(x)=q(x)$ is
(a) $a_{i}>b_{i}, \forall i \geq 0$
(b) $a_{i}=b_{i}, \forall i \geq 0$
(c) $a_{i}=0=b_{i}, \forall i \geq 0$
(d) $a_{i} \neq b_{i}$
10. $f: z \rightarrow z$ என்ற சார்பு $f(x)=x^{2}+3$ என வரையறுக்கப்படுகிறது எனில் f என்பது
(அ) செயல்மாறா கோா்த்தல் வளையம்
(ஆ) செயல்மாறா கோர்த்தல் வளளயம் அல்ல
(இ) இயல்மாறா கோர்த்தல் வளளயம்
(ஈ) முழு ஓப்புமை வளையம்
The map $f: z \rightarrow z$ defined by $f(x)=x^{2}+3$ is
(a) a ring homomorphism
(b) not a ring homomorphism
(c) a ring isomorphism
(d) a ring epimorphism

PART B $-(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 words.
11.
(அ) H, K என்பன G யின் உட்குலங்கள் எனில் $H \cap K$ யும் G யின் உட்குலம் என்பதை நிறுவுக.

If H and K are subgroups of a group G then prove that $H \cap K$ is also a subgroup of G.

Or
(ஆ) G ஒரு குலம் எனில் அதன் மையம் $Z(G)$ என்பது G யின் உட்குலம் என்பதை நிறுவுக.

Prove that the center of $G Z(G)$ is a subgroup of G.
12. (அ) லெக்ராஞ்சியின் தேற்றத்தை எழுதி நிறுவுக.

State and Prove Lagrange's theorem.
Or
(ஆ) ஒவ்வொரு வட்டக்குலமும் அபிலியன் குலம் ஆகும் என நிறுவுக.

Prove that any cyclic group is abelian.
Page 6 Code No. : 30573 B
13. (அ) $f: G \rightarrow G^{\prime}$ ஒரு செயல்மாறாக் கோர்த்தல் எனில் f ன் உட்கரு G யின் ஓரு நேர்மை உட்குலமாகும் என நிறுவுக.
Let $f: G \rightarrow G^{\prime}$ be a homomorphism. Prove that the Kernal K of f is a normal subgroup of G.

Or
(ஆ) $I(G)$ என்பது AutG யின் நேர்மை உட்குலம் நிறுவுக.
$I(G)$ is a normal subgroup of AutG prove.
14. (அ) ஒவ்வொரு களமும் எண்ணரங்கமாகும் என்பதை நிரூபணம் செய்க.
Prove that any field F is an integral domain.

Or

(ஆ) ஒரு எண்ணரங்கத்தின் சிறப்பு எண் என்பது பூஜ்ஜியம் அல்லது பகா எண் என்பதை மிறுவுக.
Prove that the characteristic of an integral domain is either 0 or a prime number.
15. (அ) $f: Z \rightarrow Z_{n}$ என்ற சார்பு $f(x)=r, r$ என்பது $x=q n+r, 0 \leq r<n$ என வரையறுக்கபட்டுள்ளது எனில் f என்பது செயல்மாறாக் கோா்த்தல் என நிறுவுக.
If $f: Z \rightarrow Z_{n}$ defined by $f(x)=r$, where $x=q n+r, 0 \leq r<n$ then prove that f is homomorphism.

Or

Page 7 Code No. : 30573 B
(ஆ) $R[x]$ என்பது ஒரு எண்ணரங்கம் எனில் R என்பதும் ஒரு எண்ணரங்கம் ஆகும் என்பதை நிறுவுக.

Prove that $R[x]$ is an integral domain iff R is an integral domain.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 600 words.
16. (அ) $G\left\{(a, b) \mid a \in R^{*}, b \in R\right\} \quad$ இதில் $\quad(a, b) *(c, d)=$ $(a c, b c+d)$ என வரையறுக்கப்பட்டால் $(G *)$ ஓரு குலம் என காட்டுக.

Let $G\left\{(a, b) \mid a \in R^{*}, b \in R\right\}$. Then prove that G is a group under the operation $*$ defined by $(a, b) *(c, d)=(a c, b c+d)$.

Or
(ஆ) குலம் G யின் இரு உட்குலங்களின் சோ்ப்பு கணம் G யின் உட்குலமாக இருக்க தேவையான மற்றும் போதுமான நிபந்தனை ஒன்று மற்றொன்றின் உள் அமையும் என நிரூபி.

Prove that the union of two subgroups of a group G is a subgroup iff one is contained in the other.

Page 8 Code No. : 30573 B
17. (அ) ஆயிலாின் தேற்றத்தை எழுதி நிரூபிக்கவும்.
"State and prove Euler's theorem."
Or
(ஆ) H, K என்பன G என்ற குலத்தின் முடிவுறு
உட்குலங்கள் எனில் $|H K|=\frac{|H||K|}{|H \cap K|}$ என நிறுவுக.
Let H, K be any two finite subgroups of a group G. Then prove that $|H K|=\frac{|H||K|}{|H \cap K|}$.
18. (அ) கெய்லியின் தேற்றத்றை எழுதி மிறுவுக.

State and prove Cayley's theorem.
Or
(ஆ) செயல்மாறாக் கோர்த்தலின் அடபபபடைத் தேற்றத்றை எழுதி நிறுவுக.

State and prove fundamental theorem of homomorphism.
19. (அ) $\left(Z_{n}, \oplus, \odot\right)$ என்பது ஒரு வறையம் என்பறத நிரூபி.

Prove that $\left(Z_{n}, \oplus, \odot\right)$ is a ring.
Or
Page 9 Code No. : 30573 B
(ஆ) R என்பது சமனி உறுப்புடைய பரிமாற்று வளையம் என்க. சீா்மம் M என்பது R ன் மீப்பெரு சீாிய வளையமாக இருப்பதற்கு தேவையான மற்றும் போதுமான நிபந்தனை $\quad R \mid M \quad$ ஒரு களமாகும் என நிறுவுக.

Let R be a commutative ring with identify. Prove that the ideal M of R is maximal iff $R \mid M$ is a field.
20. (அ) செயல்மாறாக் கோா்த்தலின் அடிப்படைத் தேற்றத்தை வளையத்தில் எழுதி நிறுவுக.
State and prove fundamental theorem of homomorphism of rings.

Or
(ஆ) $F[x]$ ல் $f(x), g(x)$ என்பன இரு உறுப்புகள். இதில் $g(x) \neq 0$ எனில் $F[x]$ ல் பல்லுறுப்புக் கோவைகள் $\quad q(x)$ மற்றும் $\quad r(x)$ என்பவை $f(x)=q(x) g(x)+r(x)$ என இருக்கும். இங்கு $r(x)=0$ அல்லது $r(x)$ ன் படி $g(x)$ ன் படியை விட சிறியது என நிரூபி.

Let F be a field. Let $f(x)$ and $g(x)$ be two polynomials in $F[x]$ with $g(x) \neq 0$. Then prove that there exist unique polynomial $q(x)$ and $r(x)$ such that $f(x)=q(x) g(x)+r(x)$, where either $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$.
B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2020.

Fifth Semester
Mathematics - Core
ABSTRACT ALGEBRA - II
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. Which one of the following is not true in a vector space V
(a) $\alpha .0=0 \forall \alpha \varepsilon F$
(b) $0 . v=0 \forall v \varepsilon v$
(c) $\quad \alpha \cdot(u v)=(\alpha u) v$
(d) $\alpha(u+v)=\alpha u+\alpha v$
2. In a vector space, the set of all vectors under addition is a
(a) field
(b) ring
(c) group
(d) abelian group
3. If $\operatorname{dim} A=4, \operatorname{dim} B=3$ and $\operatorname{dim}(A+B)=6$ then $\operatorname{dim}(A \cap B)=$?
(a) 1
(b) 8
(c) 4
(d) 2
4. If A and B are any two subspaces of a vector space V then
(a) $\operatorname{dim} A+\operatorname{dim} B \leq \operatorname{dim} V$
(b) $\operatorname{dim}(A+B) \leq \operatorname{dim} V$
(c) $\operatorname{dim} A+\operatorname{dim} B \geq \operatorname{dim} V$
(d) $\operatorname{dim} A+\operatorname{dim} B=\operatorname{dim} V$
5. If $T: V \rightarrow W$ is a linear transformation then
(a) $\quad \operatorname{dim} V \leq \operatorname{dim} T(V)$
(b) $\operatorname{dim} V=\operatorname{dim} T(V)$
(c) $\quad \operatorname{dim} V \geq \operatorname{dim} T(V)$
(d) None of these

Page 2 Code No. : 30574 E
6. If $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t \quad$ and $\quad f(t)=t-2 \quad$ then $\|f\|=$?
(a) $\sqrt{\frac{7}{3}}$
(b) $\frac{3}{7}$
(c) $\frac{7}{3}$
(d) $\frac{4}{\sqrt{3}}$
7. The rank of the matrix $\left(\begin{array}{llll}1 & 2 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ is
(a) 1
(b) 2
(c) 3
(d) 4
8. Choose the matrix for which the inverse exists
(a) $\left(\begin{array}{cc}2 & 1.5 \\ 4 & 3\end{array}\right)$
(b) $\left(\begin{array}{ll}3 & 3 \\ 2 & 2\end{array}\right)$
(c) $\left(\begin{array}{ll}\frac{1}{10} & \frac{2}{5} \\ \frac{1}{20} & \frac{1}{5}\end{array}\right)$
(d) $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
9. The characteristics equation of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right]$ is
(a) $x^{2}-2 x+7=0$
(b) $x^{2}+2 x-5=0$
(c) $x^{2}-2 x-5=0$
(d) $x^{2}-2 x+5=0$
10. The quadratic form of the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is
(a) $x^{2}+y^{2}$
(b) $2 x y$
(c) $x^{2}+2 x y$
(d) $(x+y)^{2}$

PART B - $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) If A and B are subspaces of a vector space V then prove that $A \cap B$ is also a subspace of V. In $A \cup B$ a subspace of V ?

Or
(b) If $\quad T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad$ defined by $T(a, b)=(2 a-3 b, a+4 b) \quad$ then verify whether T is a linear transformation or not.
12. (a) Prove that $S=\{(2,-3,1),(0,1,2),(1,1,2)\}$ is a basis for $V_{3}(\mathbb{R})$.

Or
(b) Let V be a finite dimensional vector space over a field F and A be a subspace of V. Prove that there exists a subspace B of V such that $V=A \oplus B$.
13. (a) Prove that an orthogonal set of non-zero vectors in an inner product space is linearly independent.

Or
(b) Find the linear transformation determined by the matrix $\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1\end{array}\right]$ with respect to the standard basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ in $V_{3}(\mathbb{R})$.
14. (a) Verify Cayley-Hamilton theorem for the $\operatorname{matrix}\left[\begin{array}{ccc}3 & 3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$.
(b) Find the rank of the matrix $\left[\begin{array}{cccc}0 & 1 & 2 & 1 \\ 2 & -3 & 0 & -1 \\ 1 & 1 & -1 & 0\end{array}\right]$.

Page 5 Code No. : 30574 E
15. (a) Prove that the characteristic roots of a Hermitian matrix are real.

Or
(b) Find the matrix of the bilinear form $f(x, y)=x_{1} y_{2}-x_{2} y_{1}$ with respect to the standard basis in $V_{2}(\mathbb{R})$.

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) Prove that \mathbb{R}^{n} is a vector space over \mathbb{R}.

Or
(b) If A and B are two subspaces of a vector space V over a field F then prove that $\frac{A+B}{A} \cong \frac{B}{A \cap B}$.
17. (a) (i) Prove that any subset of a linearly independent set in a vector space V is linearly independent.
(ii) Let V be a vector space over a field F. Let $S, T \leq V$. Prove that $L(S \cup T)=L(S)+L(T)$.

Or
(b) Let V be a finite dimensional vector space over a field F. If W is a subspace of V then show that $\operatorname{dim}(V / W)=\operatorname{dim} V-\operatorname{dim} W$.

Page 6 Code No. : 30574 E
18. (a) Prove that every finite dimensional inner product space has an ortho-normal basis.

Or
(b) If V and W are vector spaces of dimensions m, n respectively over F then show that $L(V, W)$ is a vector space of dimension m.n over F.
19. (a) State and prove Cayley-Hamilton theorem.

Or
(b) Find the inverse of $\left[\begin{array}{cccc}1 & 1 & 2 & 1 \\ 0 & -2 & 0 & 0 \\ 1 & 2 & 1 & -2 \\ 0 & 3 & 2 & 1\end{array}\right]$ by elementary transformation.
20. (a) Find the eigen values and eigen vector of the matrix $\left[\begin{array}{ccc}0 & 1 & 1 \\ -4 & 4 & 2 \\ 4 & -3 & -1\end{array}\right]$.

Or
(b) Reduce the quadratic form
$2 x_{1} x_{2}-x_{1} x_{3}+x_{1} x_{4}-x_{2} x_{3}+x_{2} x_{4}-2 x_{3} x_{4} \quad$ to the diagonal form using Lagrange's method.

Reg. No. :

Code No. : 30574 B Sub. Code : SMMA 51
B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2020.

Fifth Semester
Mathematics - Core
ABSTRACT ALGEBRA - II
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. ஒரு வெக்டர் வெளி V-யில் கீழ்க்கண்டவற்றுள் எது சிியானது அல்ல ?
(அ) $\alpha .0=0 \forall \alpha \varepsilon F$
(ஆ) $0 . v=0 \forall v \varepsilon v$
(இ) $\quad \alpha \cdot(u v)=(\alpha u) v$
(ஈ) $\quad \alpha(u+v)=\alpha u+\alpha v$

Which one of the following is not true in a vector space V
(a) $\alpha .0=0 \forall \alpha \varepsilon F$
(b) $0 . v=0 \forall v \varepsilon v$
(c) $\quad \alpha \cdot(u v)=(\alpha w) v$
(d) $\alpha(u+v)=\alpha u+\alpha v$
2. ஒரு வெக்டர் வெளியில், வெக்டர்களின் கணம் கூட்டலலப் பொறுத்து ஓரு
(அ) கணம் (ஆ) வளையம்
(இ) குலம்
(ஈ) அபீலியன் குலம்

In a vector space, the set of all vectors under addition is a
(a) field
(b) ring
(c) group
(d) abelian group
3. $\operatorname{dim} A=4, \quad \operatorname{dim} B=3$ மற்றும் $\operatorname{dim}(A+B)=6$ எனில் $\operatorname{dim}(A \cap B)=$?
(அ) 1
(ஆ) 8
(இ) 4
(*) 2

If $\operatorname{dim} A=4, \operatorname{dim} B=3$ and $\operatorname{dim}(A+B)=6$ then $\operatorname{dim}(A \cap B)=$?
(a) 1
(b) 8
(c) 4
(d) 2
4. $\quad V$ எனும் வெக்டர் வெளிக்கு A மற்றும் B என்பன ஏதேனும் இரு உள்வெளிகள் எனில்
(அ) $\operatorname{dim} A+\operatorname{dim} B \leq \operatorname{dim} V$
(ஆ) $\operatorname{dim}(A+B) \leq \operatorname{dim} V$
(இ) $\operatorname{dim} A+\operatorname{dim} B \geq \operatorname{dim} V$
(ஈ) $\operatorname{dim} A+\operatorname{dim} B=\operatorname{dim} V$
If A and B are any two subspaces of a vector space V then
(a) $\operatorname{dim} A+\operatorname{dim} B \leq \operatorname{dim} V$
(b) $\operatorname{dim}(A+B) \leq \operatorname{dim} V$
(c) $\operatorname{dim} A+\operatorname{dim} B \geq \operatorname{dim} V$
(d) $\operatorname{dim} A+\operatorname{dim} B=\operatorname{dim} V$
5. $\quad T: V \rightarrow W$ என்பது ஓரு படி நிலைமாற்றம் எனில்
(அ) $\operatorname{dim} V \leq \operatorname{dim} T(V)$
(ஆ) $\operatorname{dim} V=\operatorname{dim} T(V)$
(இ) $\operatorname{dim} V \geq \operatorname{dim} T(V)$
(ஈ) இவை ஏதுமில்லல

If $T: V \rightarrow W$ is a linear transformation then
(a) $\operatorname{dim} V \leq \operatorname{dim} T(V)$
(b) $\operatorname{dim} V=\operatorname{dim} T(V)$
(c) $\operatorname{dim} V \geq \operatorname{dim} T(V)$
(d) None of these
6. $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t \quad$ மற்றும் $\quad f(t)=t-2 \quad$ எனில் $\|f\|=$?
(அ) $\sqrt{\frac{7}{3}}$
(ஆ) $\frac{3}{7}$
(இ) $\frac{7}{3}$
(ஈ) $\frac{4}{\sqrt{3}}$
If $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t \quad$ and $\quad f(t)=t-2 \quad$ then $\|f\|=$?
(a) $\sqrt{\frac{7}{3}}$
(b) $\frac{3}{7}$
(c) $\frac{7}{3}$
(d) $\frac{4}{\sqrt{3}}$
7. $\left(\begin{array}{llll}1 & 2 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ என்ற அணியின் தரம்
(அ) 1
(ஆ) 2
(இ) 3
(ஈ) 4

The rank of the matrix $\left(\begin{array}{cccc}1 & 2 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ is
(a) 1
(b) 2
(c) 3
(d) 4
8. தலைகீழ் இருக்கக்கூடிய அணியை தோ்ந்தெடு
(அ) $\left(\begin{array}{cc}2 & 1.5 \\ 4 & 3\end{array}\right)$
(ஆ) $\left(\begin{array}{ll}3 & 3 \\ 2 & 2\end{array}\right)$
(இ) $\left(\begin{array}{ll}\frac{1}{10} & \frac{2}{5} \\ \frac{1}{20} & \frac{1}{5}\end{array}\right)$
(ஈ) $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$

Page 5 Code No. : 30574 B

Choose the matrix for which the inverse exists
(a) $\quad\left(\begin{array}{cc}2 & 1.5 \\ 4 & 3\end{array}\right)$
(b) $\quad\left(\begin{array}{ll}3 & 3 \\ 2 & 2\end{array}\right)$
(c) $\quad\left(\begin{array}{ll}\frac{1}{10} & \frac{2}{5} \\ \frac{1}{20} & \frac{1}{5}\end{array}\right)$
(d) $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
9. $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right]$ என்ற அணியின் சிறப்பியல்பு சமன்பாடு
(அ) $x^{2}-2 x+7=0$
(ஆ) $x^{2}+2 x-5=0$
(இ) $x^{2}-2 x-5=0$
(ஈ) $x^{2}-2 x+5=0$

The characteristics equation of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right]$ is
(a) $x^{2}-2 x+7=0$
(b) $x^{2}+2 x-5=0$
(c) $x^{2}-2 x-5=0$
(d) $x^{2}-2 x+5=0$

$$
\text { (அ) } x^{2}+y^{2}
$$

(ஆ) $2 x y$
(இ) $x^{2}+2 x y$
(ஈ) $\quad(x+y)^{2}$

Page 6 Code No. : 30574 B

The quadratic form of the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is
(a) $x^{2}+y^{2}$
(b) $2 x y$
(c) $x^{2}+2 x y$
(d) $\quad(x+y)^{2}$

PART B- $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11.
(அ) $A, \quad B$ என்பன வெக்டர் வெளி V-ன் உள்வெளிகள் எனில் $A \cap B$-யும் V ன் உள்வெளி என நிறுவுக. $A \cup B$ என்பது V ன் உள்வெளியா?

If A and B are subspaces of a vector space V then prove that $A \cap B$ is also a subspace of $V . \operatorname{In} A \cup B$ a subspace of V ?

Or
(ஆ) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ என்பது
$T(a, b)=(2 a-3 b, a+4 b) \quad$ என்று வரையறுக்கப்பட்டல் T ஒரு நோியல் உருமாற்றமா என சோதிக்க.
If $\quad T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad$ defined \quad by $T(a, b)=(2 a-3 b, a+4 b) \quad$ then verify whether T is a linear transformation or not.

Page 7 Code No. : 30574 B
12.
(அ) $S=\{(2,-3,1),(0,1,2),(1,1,2)\} \quad$ எனும் கணம் $V_{3}(\mathbb{R})$ व் ஓரு அடிக்கணம் என நிறுவுக.

Prove that $S=\{(2,-3,1),(0,1,2),(1,1,2)\}$ is a basis for $V_{3}(\mathbb{R})$.

Or
(ஆ) V என்பது F என்ற களத்தின் மீது அமைந்த முடிவுற பாிமாணமுள்ள வெக்டர் வெளி என்க. V இன் ஒரு உள்வெளி A எனில் $V=A \oplus B$ என்றவாறு B எனும் ஓர் உள்வெளி இருக்கும் என Бிரூபி.

Let V be a finite dimensional vector space over a field F and A be a subspace of V. Prove that there exists a subspace B of V such that $V=A \oplus B$.
13. (அ) ஒரு உட்பெருக்கல் வெளியில் உள்ள பூச்சியமற்ற செங்குத்து வெக்ட்்களின் கணம் ஒரு படிச் சாராதது என நிறுவுக.

Prove that an orthogonal set of non-zero vectors in an inner product space is linearly independent.

Or
Page 8 Code No. : 30574 B
(ஆ) $V_{3}(\mathbb{R})-$ ல் திட்டமான அடிக்கணம் $\left\{e_{1}, e_{2}, e_{3}\right\}$ ஐப்
பொறுத்து $\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1\end{array}\right]$ என்ற அணி உருவாக்கும்
நோியல் உருமாற்றத்தைக் காண்க.
Find the linear transformation determined
by the matrix $\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1\end{array}\right]$ with respect to the standard basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ in $V_{3}(\mathbb{R})$.
14. (அ) $\left[\begin{array}{ccc}3 & 3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ என்ற அணிக்கு கெய்லி-ஹேமில்டன் தேற்றத்தை சாிபாா்.

Verify Cayley-Hamilton theorem for the $\operatorname{matrix}\left[\begin{array}{ccc}3 & 3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$.

Or

Page 9 Code No. : 30574 B
(ஆ) $\left[\begin{array}{cccc}0 & 1 & 2 & 1 \\ 2 & -3 & 0 & -1 \\ 1 & 1 & -1 & 0\end{array}\right]$ என்ற அணியின் தரத்றதக் காண்க.

Find the rank of the matrix $\left[\begin{array}{cccc}0 & 1 & 2 & 1 \\ 2 & -3 & 0 & -1 \\ 1 & 1 & -1 & 0\end{array}\right]$.
15. (அ) ஓர் ஹெர்மீஷியன் அணியின் சிறப்பியல்பு மூலங்கள் மெய்யானவை என நிரூபி.

Prove that the characteristic roots of a Hermitian matrix are real.

Or
(ஆ) $\quad V_{2}(\mathbb{R})$-ல் இருமாறி நேரியல் அமைப்பு f என்பது $f(x, y)=x_{1} y_{2}-x_{2} y_{1}$ என வரரயறுக்கப்பட்டுள்னது. இங்கு $\quad x=\left(x_{1} x_{2}\right)$; $y=\left(y_{1}, y_{2}\right)$ என்க. $\left\{e_{1}, e_{2}\right\} \quad$ என்ற திட்ட அடிக்கணத்தை பொறதத்து f-க்குாிய அணியினைக் காண்க.

Find the matrix of the bilinear form $f(x, y)=x_{1} y_{2}-x_{2} y_{1}$ with respect to the standard basis in $V_{2}(\mathbb{R})$.

Page 10 Code No. : 30574 B

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) \mathbb{R}^{n} என்பது \mathbb{R}-ன் மீது அமமந்த ஓர் வெக்டர் வெளி என நிறுவுக.

Prove that \mathbb{R}^{n} is a vector space over \mathbb{R}.
Or
(ஆ) A மற்றும் B என்பவை F என்ற களத்தின் மீது அமைந்த வெக்டா் வெளி V ன் இரு உள்வெளிகள் எனில் $\frac{A+B}{A} \cong \frac{B}{A \cap B}$ என நிரூபி.

If A and B are two subspaces of a vector space V over a field F then prove that $\frac{A+B}{A} \cong \frac{B}{A \cap B}$.
17. (அ) (i) வெக்டர்வெளி V-யி்ல் ஓரு படி சாராத கணத்தின் எந்த ஒரு உட்கணமும் ஒரு பட சாராதது என நிறுவுக.
(ii) F என்ற களத்தின் மீது அமைந்த வெக்டர் வெளி V என்க. மேலும் $S, T \leq V$ எனில் $L(S \cup T)=L(S)+L(T)$ எの நிரூபி.

Page 11 Code No. : 30574 B

(i) Prove that any subset of a linearly independent set in a vector space V is linearly independent.
(ii) Let V be a vector space over a field F. Let $S, T \leq V$. Prove that $L(S \cup T)=L(S)+L(T)$.

Or
(ஆ) V என்பது F என்ற களத்தின் மீது அமைந்த முடிவுறு பாிமாணம் உடைய வெக்டா் வெளி என்க. V யின் உள்வெளி W எனில்
$\operatorname{dim}(V / W)=\operatorname{dim} V-\operatorname{dim} W$ என காண்பி.
Let V be a finite dimensional vector space over a field F. If W is a subspace of V then show that $\operatorname{dim}(V / W)=\operatorname{dim} V-\operatorname{dim} W$.
18. (அ) ஒவ்வொரு முடிவுறு பாிமாணம் கொண்ட உட்பெருக்கல் வெளி்்கும் ஓரலகு-செங்குத்து அடிக்கணம் உண்டு என நிறுவுக.

Prove that every finite dimensional inner product space has an ortho-normal basis.

Or

Page 12 Code No. : 30574 B
(ஆ) களம் F-ன் மீதான வெக்டா் வெளிகள் V, W ஆகியவற்றின் பாிமாணங்கள் முறையே m, n எனில் $L(V, W)$ என்பது m.n பாிமாணம் உள்ள F-ன் மீதான ஒரு வெக்டா் வெளி என காட்டுக.

If V and W are vector spaces of dimensions m, n respectively over F then show that $L(V, W)$ is a vector space of dimension m.n over F.
19. (அ) கெய்லி-ஹேமில்டனின் தேற்றத்தைக் கூறி நிறுவுக.

State and prove Cayley-Hamilton theorem.
Or
(ஆ) $\left[\begin{array}{cccc}1 & 1 & 2 & 1 \\ 0 & -2 & 0 & 0 \\ 1 & 2 & 1 & -2 \\ 0 & 3 & 2 & 1\end{array}\right]$ என்ற அணியின் தலைகீழ்
அணியினை, ஆதார மாற்றங்கள் மூலம் காண்க.
Find the inverse of $\left[\begin{array}{cccc}1 & 1 & 2 & 1 \\ 0 & -2 & 0 & 0 \\ 1 & 2 & 1 & -2 \\ 0 & 3 & 2 & 1\end{array}\right]$ by elementary transformation.

Page 13 Code No. : 30574 B
20. (அ) $\left[\begin{array}{ccc}0 & 1 & 1 \\ -4 & 4 & 2 \\ 4 & -3 & -1\end{array}\right]$ என்ற அணியின் பான்மை

மதிப்புகளையும் பான்மை வெக்டர்களையும் காண்க.

Find the eigen values and eigen vector of the matrix $\left[\begin{array}{ccc}0 & 1 & 1 \\ -4 & 4 & 2 \\ 4 & -3 & -1\end{array}\right]$.

Or
(ஆ) $2 x_{1} x_{2}-x_{1} x_{3}+x_{1} x_{4}-x_{2} x_{3}+x_{2} x_{4}-2 x_{3} x_{4}$
என்ற இருபடி வடிவத்றை மூலைவிட்ட வடிவத்த்ற்கு லக்ராஞ்சியன் முறையை பயன்படுத்தி சுருக்குக.
Reduce the quadratic form
$2 x_{1} x_{2}-x_{1} x_{3}+x_{1} x_{4}-x_{2} x_{3}+x_{2} x_{4}-2 x_{3} x_{4} \quad$ to the diagonal form using Lagrange's method.

Page 14 Code No. : 30574 B

Reg. No. :

Code No. : 5845

Sub. Code : PM AM 32
M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2020.

Third Semester
Mathematics - Core

TOPOLOGY - I

(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. Which one of the following is not a topology on $X=\{a, b, c\}$?
(a) $\{\phi, X,\{a, b\},\{b, c\},\{b\}\}$
(b) $\{\phi, X,\{a, b\},\{b, c\},\{b\},\{c\}\}$
(c) $\{\phi, X,\{a, b\},\{b, c\}\}$
(d) $\{\phi, X,\{a, b\}\}$
2. Which one of the following is not true?
(a) If $A=\left\{\left(\frac{1}{n}\right) / n \in Z+\right\}$ then $\bar{A}=\{0\} \cup A$
(b) If $B=\{0\} \cup(1,2)$ then $\bar{B}=\{0\} \cup[1,2]$
(c) If $C=Q$ then $\bar{C}=\mathbb{R}$
(d) If $D=Z_{+}$then $\bar{D}=Z_{+} \cup\{0\}$
3. Let π_{1} be the projection of $X \times Y$ onto X . If U is open in X then $\pi_{1}^{-1}(U)$ is
(a) U
(b) $U \times Y$
(c) $X \times U$
(d) $U \times U$
4. If $f: X \rightarrow Y$ is continuous and A is a subset of X then
(a) $f(\bar{A})=\overline{f(A)}$
(b) $\overline{f(A)} \subset f(\bar{A})$
(c) $\quad f(\bar{A}) \subseteq \overline{f(A)}$
(d) $\overline{f(A)} \subseteq f(A)$
5. With respect to the standard metric on \mathbb{R}, if $(5,9)=B(x, \Sigma)$ then
(a) $x=5, \Sigma=9$
(b) $x=7, \Sigma=2$
(c) $x=14, \Sigma=2$
(d) $x=7, \Sigma=4$
6. If d is the euclidean metric and ρ is the square metric on \mathbb{R}^{n} then
(a) $\quad \rho(x, y) \leq d(x, y) \leq \sqrt{2} \rho(x, y)$
(b) $\quad d(x, y) \leq \rho(x, y) \leq \sqrt{n} d(x, n)$
(c) $\quad \rho(x, y) \leq d(x, y) \leq \sqrt{n} \rho(x, y)$
(d) $\sqrt{n} \rho(x, y) \leq d(x, y) \leq \rho(x, y)$
7. Let $X=\{a, b, c\}, \tau=\{\phi, x,\{a, b\},\{b, c\},\{b\}\}$. Then
(a) $\{a\} \cup\{b, c\}$ is a separation of X
(b) $\{a, b\} \cup\{b, c\}$ is a separation of X
(c) $\{a, b, c\} \cup \phi$ is a separation of X
(d) X has no separation
8. Which one of the following set is compact in \mathbb{R} ?
(a) \mathbb{R}
(b) $[0,1]$
(c) $\{0\} \cup\left\{\left(\frac{1}{n}\right) /(n \in Z+)\right\}$
(d) Q
9. The one point compactification of the real line \mathbb{R} is isomorphic with
(a) The sphere S^{2}
(b) \mathbb{R}
(c) The circle
(d) The open interval $(0,1)$
10. Which one of the following is not locally compact?
(a) Every simply ordered set having the l.u.b. property
(b) The space R^{n}
(c) The subspace Q of rational number
(d) The real line \mathbb{R}

PART B - $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 words.
11. (a) Let X be a set; let Z_{f} be the collection of all subsets U of X such that $X-U$ either is finite or is all of X. Prove that Z_{f} is a topology on X.

Or
(b) Define a Hausdorff space. If X is a Hausdorff space, Prove that a sequence of points of X converges to at most one point of X.

$$
\text { Page } 4
$$

Code No. : 5845
12. (a) State and prove any two rules for constructing continuous functions.

Or

(b) Let $\left\{X_{\alpha}\right\}$ be an indexed family of spaces; let $A_{\alpha} \subset X_{\alpha}$ for each \propto. If πX_{α} is given either the product or the box topology, prove that $\pi \overline{A \propto}=\overline{\pi A_{\alpha}}$
13. (a) Let d and d^{\prime} be two metrics on X; Let τ and τ^{\prime} be the topologies they induce, respectively. Prove that τ^{\prime} is finer than τ if and only if for each x in X and each $\Sigma>0$, there exists a $\delta>0$ such that $B_{d}{ }^{\prime},(x, \delta) \subseteq B_{d}(x, \Sigma)$

Or
(b) Let $f: x \rightarrow y$; let x and y be matrizable metrics d_{x} and d_{y} respectively. Prove that the continuity of f is equivalent to the requirement that given $x \in X$ and given $\Sigma>0$, there exists $\delta>0$ such that $d_{x}(x, y)<\delta \Rightarrow$ $d_{y}(f(x), f(y))<\Sigma$.
14. (a) Let $\left\{A_{n}\right\}$ be a sequence of connected subspaces of X, such that $A_{n} \cap A_{n+1} \neq \phi$ for all n. Show that $U A_{n}$ is connected.

Or
(b) Show that every closed subspace of a compact space is compact.

$$
\text { Page } 5
$$

Code No. : 5845
15. (a) Show that compactness implies limit point compactness.

Or

(b) Define a locally compact space. Show that \mathbb{R} is locally compact and \mathbb{R}^{w} is not locally compact.

PART C - (5 $\times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Define the standard topology, lower limit topology and k - topology on the real line \mathbb{R} and obtain the relation between these topologies.

Or
(b) For a subset A of a topological space X , define the sets A^{\prime} and \bar{A} and show that $\bar{A}=A \cup A^{\prime}$.
17. (a) Let $f: x \rightarrow y$, where x and y are topological spaces. Prove that f is continuous \Leftrightarrow for every subset A of $X, f(\bar{A}) \subseteq \overline{f(A)} \Leftrightarrow$ for every closed set B of y, the set $f^{-1}(B)$ is closed in X.

Or

Page 6
Code No. : 5845
(b) Let $f: A \rightarrow \underset{\alpha}{\pi} X_{\alpha}$ be given by the equation $f(a)=\left(f_{\alpha}(a)\right)_{\alpha \in j}$, where $f_{\alpha}: A \rightarrow x_{\alpha}$ for each \propto. Let πX_{α} have the product topology. Prove that f is continuous \Leftrightarrow each function f_{α} is continuous.
18. (a) Prove that the topologies on R^{n} induced by the Euclidean metric d and the square metric f are the same as the product topology on R^{n}.

Or
(b) Show that R^{w} in the box topology is not metrizable.
19. (a) If the sets C and D form a separation of X and if Y is a connected subspace of X , prove that Y lies entirely within either C or D and hence show that the union of a collection of connected subspaces of X that have a common point is connected.

Or
(b) Prove that the product of finitely many compact spaces is compact.
20. (a) If X is metrizable, prove that every sequentially compact space is compact.

Or
(b) If X is a locally compact Hausdorff space that is not itself compact, Prove that X has a onepoint compactification.
\qquad
Code No. : 5090
Sub. Code : HMAM 43
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Fourth Semester
Mathematics
ANALYTIC NUMBER THEORY
(For those who joined in July 2012-2015)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL the questions.
Choose the correct answer :

1. Which one of the following is not a prime number
(a) 73
(b) 89
(c) 17
(d) 119
2. If $(a, b)=1$, then $(a+b, a-b)$ is
(a) 1
(b) 2
(c) 1 or 2
(d) 3
3. The value of $\mu(10)+\phi(10)$ is
(a) 5
(b) 10
(c) 4
(d) 20
4. $\sum_{d / n} \wedge(d)$ is
(a) $\left[\frac{1}{n}\right]$
(b) $\log n$
(c) n
(d) 1 or 0
5. If f is multiplicative, then $\prod_{p / n}(1-f(p))$ is
(a) 0
(b) $\sum_{d / n} \mu(d) f(d)$
(c) $\sum_{d / n} \wedge(d) f(d)$
(d) $\sum_{d / n} \lambda(d) f(d)$
6. If α has a Dirichlet inverse α^{-1}, then the equation $G(x)=\sum_{n \leq x} \alpha(n) F\left(\frac{x}{n}\right)$ implies
(a) $\quad F(x)=\sum_{n \leq x} \alpha(n) G\left(\frac{x}{n}\right)$
(b) $\quad F(x)=\sum_{n \leq x} \alpha^{-1}(n) G(x)$
(c) $\quad F(x)=\sum_{n \leq x} \alpha^{-1}(n) G\left(\frac{x}{n}\right)$
(d) $\quad F(x)=\sum_{n \leq x} \alpha^{-1}(n) G^{-1}\left(\frac{x}{n}\right)$

Page 2 Code No. : 5090
7. The average order of $d(n)$ is
(a) n
(b) $\log n$
(c) $\frac{\pi^{2} n}{12}$
(d) $\frac{3 n}{\pi^{2}}$
8. $\sum_{n \leq x} \wedge(n)\left[\frac{x}{n}\right]$ is
(a) $\log [x]$
(b) $\log x$!
(c) $\log [x]$
(d) 1
9. Chebyshev's ψ-function is defined by
(a) $\quad \psi(x)=\sum_{n \leq x} \lambda(n)$
(b) $\psi(x)=\sum_{n \leq x} \wedge(n)$
(c) $\quad \psi(x)=\sum_{n \leq x} \log p$
(d) $\quad \psi(x)=\sum_{n \leq x} \theta(n)$
10. $\pi(11.62)$ is
(a) 5
(b) 4
(c) 6
(d) 11

Page $3 \quad$ Code No. : 5090

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Prove that there are infinitely many prime numbers.

Or
(b) Prove that if $2^{n}-1$ is prime, then n is prime.
12. (a) If $n \geq 1$, prove that $\sum_{d / n} \mu(d)=\left[\frac{1}{n}\right]$.

Or
(b) State and prove the Mobius inversion formula.
13. (a) If f and g are multiplicative, prove that their Dirichlet product $f * g$ is also multiplicative.

Or
(b) Define the Liouville's function $x(n)$ and find a formula for $\sum_{d / n} \lambda(d)$ for $n \geq 1$.

Page $4 \quad$ Code No. : 5090
[P.T.O.]
14. (a) If $x \geq 1$, prove that $\sum_{n \leq x} \frac{1}{n}=\log x+C+0\left(\frac{1}{x}\right)$. Or
(b) Prove that the average order of $\phi(n)$ is $\frac{3 n}{\pi^{2}}$.
15. (a) Prove that $\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1 \quad$ implies

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{\pi(x) \log \pi(x)}{x}=1 \\
\text { Or }
\end{gathered}
$$

(b) State and prove Abel's identify.

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) Prove that the infinite series $\sum_{n=1}^{\infty} \frac{1}{p_{n}}$ diverges.

Or
(b) State and prove the division algorithm.

Page $5 \quad$ Code No. : 5090
17. (a) Define the Euler Quotient function $\phi(n)$ and show that for $n \geq 1, \sum_{d / n} \phi(d)=n$.

Or
(b) For $n \geq 1$, prove that $\phi(n)=n \underset{p \backslash n}{\pi}\left(1-\frac{1}{p}\right)$.
18. (a) If both g and $f * g$ are multiplicative, prove that f is also multiplicative.

Or
(b) Assume f is multiplicative. Prove that
(i) $\quad f^{-1}(n)=\mu(n) f(n)$ for every square free n (ii) $f^{-1}\left(p^{2}\right)=f(p)^{2}-f\left(p^{2}\right)$ for every prime p.
19. (a) State and prove the Euler's summation formula.

Or
(b) Define the density of the lattice points visible from the origin and find the density of the set of lattice points visible from the origin.

Page $6 \quad$ Code No. : 5090
20. (a) Prove that the following relations are logically equivalent :
(i) $\operatorname{lt}_{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1$
(ii) $\underset{x \rightarrow \infty}{ } \frac{Q(x)}{x}=1$
(iii) $\underset{x \rightarrow \infty}{ } \operatorname{lt}_{x} \frac{\psi(x)}{x}=1$.

Or
(b) For every integer $n \geq 2$, prove that $\pi(n)>\frac{1}{6} \cdot \frac{n}{\log n}$.

Page $7 \quad$ Code No. : 5090

Reg. No. :

\qquad

Code No. : 5089

Sub. Code : HMAM 42
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Fourth Semester
Mathematics

MEASURE AND INTEGRATION

(For those who joined in July 2012-2015)
Time : Three hours Maximum : 75 marks PART A - ($10 \times 1=10$ marks $)$

Answer ALL questions.
Choose the correct answer :

1. If A is measurable and B is any set disjoint from A, then
(a) $m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)$
(b) $m^{*}(A \cup B)=m^{*}(A)$
(c) $m *(A \cup B)=m *(B)$
(d) $m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)-m^{*}(A \cap B)$
2. If E_{1} and E_{2} are measurable, then
(a) $m\left(E_{1} \cup E_{2}\right)+m\left(E_{1} \cap E_{2}\right)=m\left(E_{1}\right)+m\left(E_{2}\right)$
(b) $m\left(E_{1} \cup E_{2}\right)=m\left(E_{1}\right)+m\left(E_{2}\right)+m\left(E_{1} \cap E_{2}\right)$
(c) $m\left(E_{1} \cup E_{2}\right)=m\left(E_{1}\right)+m\left(E_{2}\right)$
(d) $m\left(E_{1} \cup E_{2}\right)=m\left(E_{1}\right)-m\left(E_{2}\right)+m\left(E_{1} \cap E_{2}\right)$
3. Let the function f have a measurable domain E.

Then which one of the following is true
(a) $\{x \in E / f(x)=\infty\}=\bigcap_{K=1}^{\infty}\{x \in E / f(x) \geq K\}$
(b) $\{x \in E / f(x)=\infty\}=\bigcap_{K=1}^{\infty}\{x \in E / f(x)>K\}$
(c) $\{x \in E / f(x)=\infty\}=\bigcap_{K=1}^{\infty}\{x \in E / f(x)<K\}$
(d) $\{x \in E / f(x)=\infty\}=\bigcap_{K=1}^{\infty}\{x \in E / f(x) \leq K\}$
4. Let f be a bounded measurable function on a set of finite measure E. Suppose A and B are disjoint measurable subsets on E. Then
(a) $\int_{A \cup B} f=\int_{A} f+\int_{B} f-\int_{A \cap B} f$
(b) $\int_{A \cup B} f=\int_{A} f+\int_{B} f+\int_{A \cap B} f$
(c) $\int_{A \cup B} f=\int_{A} f+\int_{B} f$
(d) $\int_{A \cup B} f=\int_{A} f-\int_{B} f$
5. The function f defined on $[0,1]$ by $f(x)=\left\{\begin{array}{ll}x^{2} \sin \left(\frac{1}{x^{2}}\right) & \text { for } 0<x \leq 1 \\ 0 & \text { for } x=0\end{array}\right.$, then
(a) f^{\prime} is integrable over $[0,1]$
(b) f^{\prime} is not integrable over $[0,1]$
(c) not continuous
(d) none of these

Page $3 \quad$ Code No. : 5089
6. The functions f and g on $[-1,1]$ by $f(x)=x^{1 / 3}$ for $-1 \leq x \leq 1$ and

$$
g(x)= \begin{cases}x^{2} \cos (\pi / 2 x) & \text { if } x=0, x \in[-1,1] \\ 0 & \text { if } x=0\end{cases}
$$

(a) neither f and nor g are absolutely continuous on $[-1,1]$
(b) f is absolutely continuous on $[-1,1]$ and g is not absolutely continuous
(c) both f and g are absolutely continuous $[-1,1]$
(d) none of these
7. If A and B are measurable sets and $A \leq B$, then
(a) $\mu(A)<\mu(B)$
(b) $\mu(A)=\mu(B)$
(c) $\mu(A) \leq \mu(B)$
(d) $\mu(A) \geq \mu(B)$
8. For an outer measure $\mu^{*}: 2^{X} \rightarrow[0, \infty]$, we call a subset E of X measurable (with respect to μ^{*}) provided for every subset A of X,
(a) $\mu^{*}(A)=\mu^{*}(A \cap E)$
(b) $\mu^{*}(A)=\mu^{*}\left(A \cap E^{C}\right)$
(c) $\mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{C}\right)$
(d) $\mu^{*}(A)=\mu^{*}(A \cup E)+\mu^{*}\left(A \cup E^{C}\right)$

Page $4 \quad$ Code No. : 5089
9. Consider a σ - algebra $M=\{X, \phi\}$. Then the only measurable functions are
(a) Bounded functions
(b) Constant functions
(c) Continuous functions
(d) None of these
10. Let (X, M, μ) be a measure space and f a non negative measurable function on X for which $\int_{X} f d \mu<\infty$, then one of them is true
(a) $\{x \in X / f(x)>0\}$ is a σ-finite
(b) $\{x \in X / f(x)>0\}$ is not a σ-finite
(c) $\{x \in X / f(x)>0\}$ is finite
(d) None of these

PART B - $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Prove that the union of a countable collection of measurable sets is measurable.

Or
(b) Let f and g be measurable functions on E that are finite almost everywhere on E. Then prove that $f g$ is measurable on E.

$$
\text { Page } 5 \quad \text { Code No. : } 5089
$$

12. (a) Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E that converges pointwise almost everywhere on E to the function f. Then prove that f is measurable.

Or
(b) State and prove bounded convergence theorem.
13. (a) Let f be an increasing function on the closed bounded interval $[a, b]$. Then prove that for each $\alpha>0$, $m^{*}\{x \in(a, b) / \bar{D} f(x) \geq \alpha\} \leq \frac{1}{\alpha} .[f(b)-f(a)]$ and $m^{*}\{x \in(a, b) / \bar{D} f(x)=\infty\}=0$.

Or
(b) Prove that a function f on a closed bounded interval $[a, b]$ is absolutely continuous on [$a, b]$ if and only if it is an indefinite integral over $[a, b]$.

Page $6 \quad$ Code No. : 5089
14. (a) Let γ be a signed measure on the measurable space (X, M). Prove that every measurable subset of a positive set is itself positive and the union of a countable collection of positive sets is positive.

Or
(b) Prove that the union of a finite collection of measurable sets is measurable.
15. (a) Let (X, M) be a measurable space, f a measurable real-valued function on X, and $\phi: R \rightarrow R$ continuous. Then prove that the composition $\phi \circ f: X \rightarrow R$ also is measurable.

Or
(b) Let (X, M, μ) be a measure space and f a nonnegative measurable function on X for which $\int_{X} f d \mu<\infty$. Then prove that f is finite almost everywhere on X and $\{x \in X / f(x)>0\}$ is σ-finite.

Page $7 \quad$ Code No. : 5089

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) Prove that the outer measure of an interval is its length.

Or

(b) Prove that the Lebesque measure possesses the following continuity properties
(i) If $\left\{A_{K}\right\}_{K=1}^{\infty}$ is an ascending collection of measurable sets, then

$$
m\left(\bigcup_{K=1}^{\infty} A_{k}\right)=\lim _{K \rightarrow \infty} m\left(A_{k}\right)
$$

(ii) If $\left\{B_{K}\right\}_{K=1}^{\infty}$ is a descending collection of measurable sets and $m\left(B_{1}\right)<\infty$, then

$$
m\left(\bigcap_{K=1}^{\infty} B_{K}\right)=\lim _{K \rightarrow \infty} m\left(B_{K}\right) .
$$

Page $8 \quad$ Code No. : 5089
17. (a) Assume E has finite measure. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E that converges pointwise on E to the real valued function f. Then prove that for each $\in>0$, there is a closed set F contained in E for which $\quad\left\{f_{n}\right\} \rightarrow f \quad$ uniformly on F and $m(E \sim F)<\epsilon$.

Or
(b) State and prove the Lebesgue dominated convergence theorem.
18. (a) Prove that if the function f is monotone on the open interval (a, b), then it is differentiable almost everywhere on (a, b).

Or
(b) Prove that a function f is of bounded variation on the closed bounded interval $[a, b]$ if and only if it is the difference of two increasing functions on $[a, b]$.
19. (a) State and prove the Hahn Decomposition theorem.

Or

(b) Prove that the union of a countable collection of measurable sets is measurable.

Page $9 \quad$ Code No. : 5089
20. (a) State and prove Fatou's lemma.

Or

(b) Let (X, M, μ) be a measure space and $\left\{f_{n}\right\}$ a sequence of functions on X that is both uniformly integrable and tight over X. Assume $\left\{f_{n}\right\} \rightarrow f$ pointwise almost everywhere on X and the function f is integrable over X. Then prove that $\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} f d \mu$.
(7 pages)
Code No. : 5853

Reg. No. :
Sub. Code : PMAM 42
M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2020.

Fourth Semester
Mathematics - Core
COMPLEX ANALYSIS
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. The radius of convergence of the series $\sum\left\lfloor n Z^{n}\right.$ is
(a) 0
(b) ∞
(c) e
(d) 1
2. If $\varrho(z)=u+i v=|z|^{2}$ then $\frac{\partial u}{\partial y}=$
(a) $2 x$
(b) $2 y$
(c) $-2 y$
(d) $-2 x$
3. The transformation $\frac{1}{z}$ is called
(a) parallel translation
(b) inversion
(c) rotation
(d) homothetic transformation
4. Which one of the following is false?
(a) two reflections result is a linear
transformation
(b) reflections are linear transformations
(c) $w=z+\alpha$ is called a parallel translation
(d) $\operatorname{Im}(Z)=-\operatorname{Im}\left(\frac{1}{Z}\right)$
5. $\int_{|z|=1} \frac{e^{z} d z}{z}=$
(a) 1
(b) 0
(c) $2 \pi i$
(d) none of these

Page 2 Code No. : 5853
6. If C is the circle $|z-2|=5$, then $\int_{C} \frac{d z}{z-3}$ is
(a) $2 \pi i$
(b) 0
(c) 1
(d) 2π
7. $f(z)=\frac{1}{z}$ has a removable singularity at $Z=$
(a) 1
(b) $\quad \infty$
(c) 0
(d) none
8. For the function $f(z)=\frac{1-e^{2 z}}{z^{4}}$, the point $Z=0$ is a pole of order.
(a) 4
(b) 3
(c) 1
(d) ∞
9. $\int_{0}^{\pi} \log \sin x d x=$
(a) $\pi \log 2$
(b) $-2 \pi \log 3$
(c) $-\pi \log 2$
(d) none of these

Page $3 \quad$ Code No. : 5853
10. The number of roots of the equation $z^{7}-2 z^{5}+6 z^{3}-z+1=0$ in the disc $|z|<1$ is
(a) 3
(b) 4
(c) 5
(d) 7

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) State and prove the necessary condition for differentiability.

Or

(b) State and prove Lucas theorem.
12. (a) At each point z for a region Ω where $C(z)$ is analytic and $f^{\prime}(z) \neq 0$. Then prove that the mapping $w=f(z)$ is conformal.

Or

(b) Find the linear transformation which carries $0, i,-i$ into $1,-1,0$.
13. (a) Compute $\int_{|z|=2} \frac{d z}{z^{2}+1}$ by decomposition of integral into partial fraction.

Or

(b) State and prove Cauchy's Integral formula.

Page $4 \quad$ Code No. : 5853
[P.T.O.]
14. (a) State and prove fundamental theorem of algebra.

Or
(b) State and prove Weierstrass theorem for essential singularity.
15. (a) State and prove Rouche's theorem.

Or
(b) State and prove the argument principle.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Prove that every rational function has a representation by partial fraction.

Or
(b) Prove that a rational function $R(z)$ of order p has p zeros and p poles and also prove that every equation $R(z)=a$ has exactly p roots.

Page $5 \quad$ Code No. : 5853
17. (a) Prove that the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points lie on a circle or on a straight line. Also prove that $z \rightarrow \bar{z}$ is not a linear transformation.

Or
(b) Prove that the integral $\int_{\gamma} f(z) d z$, with continuous f, depends only on the end points of γ if and only if C is the derivative of an analytical function in Ω.
18. (a) State and prove Cauchy's theorem for a disk.

Or
(b) Define winding number and write three properties of winding number.
19. (a) Prove that an analytic function has derivatives of all orders.

Or
(b) Prove that a non constant analytic function maps open sets onto open sets.

Page 6
Code No. : 5853
20. (a) Evaluate $\int_{0}^{\infty} \frac{\log \left(1+x^{2}\right) d x}{x^{H \alpha}}, 0<\alpha<2$.

Or
(b) Prove that $\int_{0}^{\infty} \frac{\sin m x}{x} d x=\frac{\pi}{2}$.

Page $7 \quad$ Code No. : 5853
(6 pages)
Reg. No. : \qquad

Code No. : 5091
Sub. Code : HMAE 41
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Fourth Semester
Mathematics
Elective - GRAPH THEORY
(For those who joined in July 2012-2015)
Time : Three hours
Maximum : 75 marks

$$
\text { PART A }-(10 \times 1=10 \text { marks })
$$

Answer ALL questions.

Choose the correct answer :

1. If G is simple then
(a) $\varepsilon=\binom{\gamma}{2}$
(b) $\varepsilon \geq\binom{\gamma}{2}$
(c) $\quad \varepsilon \leq\binom{\gamma}{2}$
(d) $\varepsilon \leq\binom{\gamma-1}{2}$
2. If e is a link of G with 5 vertices, 6 edges and 2 components then $\gamma(G . e)+\sum(G . e)+\omega(G . e)$ is
(a) 11
(b) 12
(c) 10
(d) 13
3. The edge connectivity $k^{1}(G)=1$ if
(a) G is connected
(b) G is connected with a cut edge
(c) G is connected with a cut vertex
(d) G is disconnected
4. The number of bridges in the Konigsberg bridge problem is
(a) 8
(b) 6
(c) 9
(d) 7
5. If every vertex of G is M-saturated, then the matching M is called
(a) A maximum matching
(b) A perfect matching
(c) A minimum matching
(d) A M - saturated matching
6.

(a) 1
(b) 2
(c) 3
(d) 4
7. If $\delta>0$, then $\alpha-\beta^{\prime}=$?
(a) $\alpha^{\prime}-\beta$
(b) $\beta-\alpha^{\prime}$
(c) $a^{\prime}+\beta$
(d) $\alpha^{\prime}-\beta^{\prime}$
8. The value of $r(3,3)$ is
(a) 4
(b) 5
(c) 6
(d) 1
9. If G is k - chromatic, n then G contains a subdivision of k_{k}. This is senown as
(a) Brooks' conjecture
(b) Hajos' conjecture
(c) Dirac's conjecture
(d) Erdos conjecture
10. Every critical graph is
(a) A clique
(b) A block
(c) Complete
(d) An odd cycle

Page $3 \quad$ Code No. : 5091

$$
\text { PART B }-(5 \times 5=25 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
11. (a) Define δ and Δ in a graph G and prove that $\delta \leq 2 \Sigma / \gamma \leq \Delta$.

Or
(b) If G is a tree, prove that $\sum=\gamma-1$.
12. (a) Let G be a 2 -connected graph with $\gamma \geq 3$. Prove that any two vertices of G are connected by at least two internally disjoint paths.

Or
(b) Show that $C(G)$ is well defined.
13. (a) Prove that a matching M in G is a maximum matching if and only if G contains no M-augmenting path.

Or
(b) Let G be a connected graph that is not an odd cycle. Prove that G has a 2 -edge colouring in which both colours are represented at each vertex of degree at least two.

Page 4 Code No. : 5091
[P.T.O.]
14. (a) Prove that a set $S \subseteq V$ is an independent set of G if and only if $V-S$ is a covering of G.

Or
(b) Prove that $r(k, l) \leq\binom{ k+l-2}{k-1}$.
15. (a) If G is k-critical, show that $\delta \geq k-1$.

Or
(b) If G is simple, prove that $\prod_{k}(G)=\prod_{k}(G-e)=-\prod_{k}(G . e)$ for any edge e of G.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) "A graph is bipartite if and only if it contains no odd cycle" - is it true? Justify your answer.

Or
(b) Define a cut edge with an example. Prove that an edge e is a cut edge of G if and only if it is contained in no cycle of G.

Page $5 \quad$ Code No. : 5091
17. (a) Define the parameters k, k^{1} and δ and prove that $k \leq k^{1} \leq \delta$.

Or
(b) Prove that a nonempty connected graph is eulerian if and only if it has no vertices of odd degree.
18. (a) State and prove Hall's theorem.

Or
(b) State and prove Vizing's pheorn.
19. (a) Prove that $\alpha+\beta=\alpha^{\prime}+\beta^{\prime}=\gamma$.

Or
(b) Prove that $r(k, k) \geq 2^{k / 2}$.
20. (a) State and prove Brooks' theorem.

Or
(b) If G is 4 -chromatic, prove that G contains a subdivision of k_{4}.

Reg. No. :

\qquad

Code No. : 5093
Sub. Code : HMAE 43
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Fourth Semester
Mathematics

Elective - PARTIAL DIFFERENTIAL EQUATIONS
(For those who joined in July 2012-2015)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. A solution of $\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)}$ is
(a) $x y z=c$
(b) $x^{2}=y$
(c) $x=y^{2}$
(d) $x=y z$
2. A pfaffian DE in Z variables is of the form
(a) $d x+P=0$
(b) $P+d y=0$
(c) $P d x+Q d y=0$
(d) None
3. The $P D E$ obtained by eliminating a, b from $z=(x+a)(y+b)$ is
(a) $p x+q y=q^{2}$
(b) $p-q=z$
(c) $p q=z$
(d) $\frac{p}{q}=c$
4. Eliminating the arbitrary function f from $z=f(x-y)$ we got
(a) $p x-q y=c$
(b) $p+q=0$
(c) $p-q=z$
(d) $p=q^{2}$
5. For the $P D E \quad F(x, y, z, p, q)=0$, the equation $F(x, y, z, a, b)=0$ is a
(a) General integral
(b) Complete integral
(c) Particular integral
(d) Singular solution
6. $\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{k} \frac{\partial z}{\partial t}$ is
(a) Two dimensional equation
(b) One dimensional diffusion equation
(c) Wave equation
(d) Laplace equation

Page 2 Code No. : 5093
7. A complete integral of the equation $p q=1$ is
(a) $a x+y=c$
(b) $a x+y=z$
(c) $a^{2} x+y-a z=b$
(d) $a x+b y=c$
8. $R r+S s+T t=f(x, y, z, p, q)$ is a
(a) Legendre equation
(b) pfaffian equation
(c) Cauchy problem
(d) Hyperbolic equation
9. $U_{x x}+U_{y y}=U_{z z}$ is
(a) Parabolic
(b) Hyperbolic
(c) Elliptic
(d) None
10. $\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{C^{2}} \frac{\partial^{2} z}{\partial x^{2}}$ is
(a) One dimensional diffusion equation
(b) Wave equation
(c) Heat equation
(d) Laplace equation

Page 3 Code No. : 5093

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Describe how will you solve $\frac{d x}{p}=\frac{d y}{Q}=\frac{d z}{R}$.

Or
(b) Find the integral curves of $\frac{a d x}{(b-c) y z}=\frac{b d y}{(c-a) z x}=\frac{c d z}{(a-b) x y}$.
12. (a) Find a $P D E$ by eliminating arbitrary function from $F(u, v)=0$ where u, v are functions of x, y, z.

Or

(b) Explain the method of solving the Lagrange's equation $P_{p}+Q_{q}=R$.
13. (a) Find the integral surface of the equation $(x-y) y^{2} p+(y-x) x^{2} q=\left(x^{2}+y^{2}\right) z$ through the curve $x z=a^{3}, y=0$.
Or
(b) Find the equation of the system of surfaces which cut orthogonally the cones of the system $x^{2}+y^{2}+z^{2}=c x y$.

Page 4 Code No. : 5093
[P.T.O.]
14. (a) Explain Laplace's equation.

Or
(b) Find a particular integral of the equation $\left(D^{2}-D^{1}\right) z=z y-x^{2}$.
15. (a) Describe Cauchy's problem for the second order PDE.

Or
(b) By separating the variables, solve the $P D E$ $\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{C^{2}} \frac{\partial^{2} z}{\partial t^{2}}$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b)
16. (a) Show that a necessary and sufficient condition that the pfaffian differential equation $\bar{X} . d \bar{r}=0$ should be integrable is that $\bar{X} . \operatorname{curl} \bar{X}=0$.

Or
(b) Solve $y z d x+2 x z d y-3 x y d z=0$.
17. (a) Solve $p x(x+y)=q y(x+y)-(x-y)(2 x+2 y+z)$.

Or
(b) Find the integral surface of the $P D E$ $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z$ which contains the straight line $x+y=0$.

Page $5 \quad$ Code No. : 5093
18. (a) Show that the equations $x p=y q$, $z(x p+y q)=2 x y$ are compatible and solve them.

Or
(b) Find the solution of the equation $Z=\frac{1}{2}\left(p^{2}+q^{2}\right)+(p-x)(q-y) \quad$ which passes through the x-axis.
19. (a) Explain charpit's method.

Or
(b) Show that the characteristics of the equation $R r+S s+T t=f(x, y, z, p, q)$ are invariant with respect to any transformations of the independent variables.
20. (a) Explain how you will solve hyperbolic equations of second order.

Or
(b) Discuss the solutions of the equation $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\frac{1}{k} \frac{\partial z}{\partial t}$.
(8 pages)

Reg. No. :

Code No. : 5547
Sub. Code : KMAM 42
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Fourth Semester
Mathematics

COMPLEX ANALYSIS

(For those who joined in July 2016 only)
Time : Three hours Maximum : 75 marks

$$
\text { PART A }-(10 \times 1=10 \text { marks })
$$

Answer ALL questions.
Choose the correct answer :

1. Analytic functions are characterized by the condition
(a) $\frac{\partial f}{\partial x}=0$
(b) $\frac{\partial f}{\partial z}=0$
(c) $\frac{\partial f}{\partial \bar{z}}=0$
(d) $\frac{\partial f}{\partial y}=0$
2. The radius of convergence of the series $\sum \frac{z^{n}}{n!}$ is
(a) 1
(b) 0
(c) $\frac{1}{n}$
(d) ∞
3. A linear transformation carries circles into
(a) quadrilaterals
(b) circles
(c) rectangles
(d) straight lines
4. Consider a circle C with the centre a, represented by the equation $z=a+\rho e^{i t}, \quad 0 \leq t \leq 2 \pi$, then $\int_{C} \frac{d z}{z-a}$ is
(a) $2 \pi i$
(b) 0
(c) 1
(d) 2π
5. The index of the point a w.r.t. the curve γ is
(a) $\int_{\gamma} \frac{d z}{z-a}$
(b) $\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-a}$
(c) $\int_{\gamma} \frac{|d z|}{|z-a|}$
(d) $\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{(z-a)^{2}}$

Page $2 \quad$ Code No. : 5547
6. A function which is analytic and bounded in the whole plane must reduce to a constant. This theorem is known as
(a) Morera's theorem
(b) Fundamental theorem of algebra
(c) Liouville's theorem
(d) Cauchy's theorem
7. The residue of $\frac{e^{z}}{(z-5)(z-2)}$ at $z=2$ is
(a) $\frac{e^{2}}{-3}$
(b) $\frac{e^{2}}{3}$
(c) $\frac{e^{5}}{3}$
(d) $\frac{e^{5}}{-3}$
8. If $\lim _{z \rightarrow a} f(z)=\infty$, the point ' a ' is said to be
(a) an isolated singularity
(b) a zero
(c) a pole
(d) an accumulation point

Page $3 \quad$ Code No. : 5547
9. The residue of $\frac{z^{2}}{(z-1)(z-2)(z-3)}$ at $z=1$ is
(a) 1
(b) 2
(c) 0
(d) $1 / 2$
10. If $z=e^{i \theta}$ then $\frac{1}{2 i}\left(z-\frac{1}{z}\right)$ is
(a) $\cos \theta$
(b) $\sin \theta$
(c) $\cos 2 \theta$
(d) $\sin 2 \theta$

PART B $-(5 \times 5=25$ marks $)$

Answer ALL questions, choosing either (a) or (b).
11. (a) Verify Cauchy-Riemann's equations for the function z^{3}.

Or

(b) If all zeros of a polynomial $P(z)$ lie in a half plane, prove that all zeros of the derivative $P^{\prime}(z)$ lie in the same half plane.

Page $4 \quad$ Code No. : 5547
[P.T.O.]
12. (a) Given three distinct points z_{2}, z_{3}, z_{4} in the extended plane, prove that there exists a unique linear transformation S which carries them into $1,0, \infty$ in this order.

Or
(b) Complete $\int_{\gamma} x d z$ where γ is the directed line segment from 0 to $1+i$.
13. (a) State and prove Morera's theorem.

Or
(b) State and prove Liouvelle's theorem.
14. (a) Define the following :
(i) isolated singularity of a function
(ii) zero of order h of a function
(iii) pole of a function
(iv) meromorphic functions

Or
(b) State and prove the maximum principle for analytic functioning.

Page $5 \quad$ Code No. : 5547
15. (a) State and prove Rouche's theorem.

Or
(b) If u_{1} and u_{2} are harmonic in a region Ω, prove that
$\int_{\gamma} u_{1} * d u_{2}-u_{2} * d u_{1}=0$ for every cycle γ which is homologous to zero in Ω.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) If $u(x, y)$ and $v(x, y)$ have continuous first order partial derivatives which satisfy the Cauchy-Riemann differential equations, prove that $f(z)=u(z)+i v(z)$ is analytic with continuous derivative $f^{\prime}(z)$ and conversely.

Or
(b) State and prove Abel's limit theorem.

Page $6 \quad$ Code No. : 5547
17. (a) If $T_{1} z=\frac{z+2}{z+3}, T_{2} z=\frac{z}{z+1}$, find $T_{1} T_{2} z, T_{2} T_{1} z$ and $T_{1}^{-1} T_{2} z$.

Or
(b) Prove that the line integral $\int_{\gamma} p d x+q d y$, defined in Ω, depends only on the end points of γ if and only if there exists a function $U(x, y)$ in Ω with the partial derivatives $\frac{\partial U}{\partial x}=p, \frac{\partial U}{\partial y}=q$.
18. (a) State and prove Cauchy's theorem for a rectangle.

Or
(b) Suppose that $\phi(\xi)$ is continuous on the arc γ. Prove that the function $F_{n}(z)=\int_{\lambda} \frac{\phi(\xi) d \xi}{(\xi-z)^{n}}$ is analytic in each of the regions determined by γ, and its derivative is $F_{n}^{\prime}(z)=n F_{n+1}(z)$.

Page $7 \quad$ Code No. : 5547
19. (a) State and prove Taylor's theorem.

Or
(b) State and prove the lemma of Schwarz.
20. (a) State and prove the argument principle.

Or
(b) Evaluate $\int_{0}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} d x$, a real.

Page $8 \quad$ Code No. : 5547

Reg. No. :

\qquad
Code No. : 5548
Sub. Code : KMAM43
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Fourth Semester
Mathematics

DIFFERENTIAL GEOMETRY

(For those who joined in July 2016 only)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :s

1. A point P where \quad is called a point of inflexion.
(a) $\bar{r}=\bar{o}$
(b) $\bar{r}^{\prime}=\bar{o}$
(c) $\bar{r}^{\prime \prime}=\bar{o}$
(d) $\bar{r}^{\prime} \cdot \bar{r}^{\prime \prime}=o$
2. $\left[\bar{r}^{\prime}, \bar{r}^{\prime \prime}, \bar{r}^{\prime \prime \prime}\right]$ is
(a) $K^{2} \tau$
(b) $K \tau^{2}$
(c) $K^{2}\left(u^{1}\right)^{-6}$
(d) O
3. A helix of constant curvature is necessarily
(a) a sphere
(b) a spherical helix
(c) a cylindrical helix
(d) a circular helix
4. A necessary and sufficient condition that a curve be a straight line is
(a) $K=0$ at all points
(b) $\tau=0$ at all points
(c) $\left[\bar{r}^{\prime}, \bar{r}^{\prime \prime}, \bar{r}^{\prime \prime \prime}\right]=0$
(d) $[\dot{\bar{r}}, \ddot{\vec{r}}, \ddot{\ddot{r}}]=0$
5. Eliminating u and v from $x=u \cos h v$, $y=u \sin h v, z=u^{2}$, the constraint equation is
(a) $x^{2}-y^{2}=z$
(b) $x^{2}+y^{2}=z$
(c) $x^{2}+y^{2}=-z$
(d) $x^{2}-y^{2}=-z$
6. The formula for $d s^{2}$ is
(a) $E d u^{2}+F d u d v+G d v^{2}$
(b) $E d u^{2}+2 F d u d v+G d v^{2}$
(c) $E d u+2 F d u d v+G d v$
(d) $E d v^{2}+2 F d u d v+G d u^{2}$
7. If the parametric curves are orthogonal then the curve $v=c$ will be geodesic if and only if
(a) E is a function of v only
(b) E is a function of u only
(c) G is a function of v only
(d) G is a function of u only
8. Orthogonal trajectories are called
(a) orthogonal parallels
(b) orthogonal geodesic
(c) geodesic parallels
(d) geodesic trajectories
9. The second fundamental form is
(a) $L d u^{2}+2 M d u d v+N d v^{2}$
(b) $L d u^{2}+M d u d v+N d v^{2}$
(c) $L d u+2 M d u^{2} d v^{2}+N d v$
(d) $L d u^{2}-2 M d u d v+N d v^{2}$
10. The Gaussian curvature K is defined by
(a) $\frac{L N+M^{2}}{E G-F^{2}}$
(b) $\frac{L N-M^{2}}{E G-F^{2}}$
(c) $\frac{L N+M^{2}}{E G+F^{2}}$
(d) $\frac{E G-F^{2}}{L N-M^{2}}$

Page $3 \quad$ Code No. : 5548

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 words.
11. (a) Calculate the curvature and torsion of the cubic curve given by $r=\left(u, u^{2}, u^{3}\right)$.

Or
(b) Prove that $\left[\bar{r}^{\prime}, \bar{r}^{\prime \prime}, \bar{r}^{\prime \prime \prime}\right]=K^{2} \tau$.
12. (a) Show that the osculating plane at P has, in general, three point contact with the curve at P.

Or
(b) Show that the involutes of a circular helix are plane curves.
13. (a) Show that a proper parametric transmission either leaves every normal unchanged or reverses every normal.

Or
(b) Find the coefficients of the direction which makes an angle $\pi / 2$ with the direction whose coefficients are (l, m).

Page $4 \quad$ Code No. : 5548
[P.T.O.]
14. (a) In the paraboloid $x^{2}-y^{2}=z$, find the orthogonal trajectories of the section by the planes $z=$ constant.

Or
(b) Prove that the curves of the family $v^{3} / u^{2}=$ constant are geodesics on a surface with metric $v^{2} d u^{2}-2 u v d u d v+2 u^{2} d v^{2}$ (where $u>0, V>0$).
15. (a) Find the geodesic curvature of the parametric curve $v=c$.

Or
(b) Prove the Euler's formula

$$
K=K_{a} \cos ^{2} \psi+K_{b} \sin ^{2} \psi .
$$

$$
\text { PART C }-(5 \times 8=40 \mathrm{marks})
$$

Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 600 words.
16. (a) Obtain the Serret-Frenet formulae.

Or

(b) Find the curvature and the torsion of the curve $r=\left\{a\left(3 u-u^{3}\right), 3 a u^{2}, a\left(3 u+u^{3}\right)\right\}$.

Page $5 \quad$ Code No. : 5548
17. (a) Show that the spherical indication of a curve is a circle if and only if the curve is a helix.

Or
(b) Prove that the necessary and sufficient condition for a curve to be a helix is that its curvature and torsion are in a constant ratio.
18. (a) Show that the parametric curves on the sphere given by $x=a \sin x \cos v$, $y=a \sin u \sin v, \quad z=a \cos u, \quad 0<u<\pi / 2$, $0<v<2 \pi$, form on orthogonal system. Determine the two families of curves whch meet the curves $v=$ constant at angles of $\pi / 4$ and $3 \pi / 4$.

Or

(b) Show that on a right helicoids, the family of curves orthogonal to the curves $u \cos v=$ constant in the family $\left(u^{2}+a^{2}\right)$ $\sin ^{2} v=$ constant.
19. (a) Prove that, on the general surface, a necessary and sufficient condition that the curve $v=c$ be a geodesic is $E E_{2}+F E_{1}-2 E F_{1}=0$ when $v=c$, for all values of u.

Or
(b) Find the geodesics on a surface of revolution.

Page $6 \quad$ Code No. : 5548
20. (a) Define lines of curvature and characterize the lines of curvature.

Or
(b) State and prove Hilbert's lemma.

Page $7 \quad$ Code No. : 5548

Reg. No. :

Code No. : 5852
Sub. Code : PMAM 41

M.Sc. (CBCS) DEGREE EXAMINATION,

 APRIL 2020.Fourth Semester
Mathematics - Core FUNCTIONAL ANALYSIS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. $\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\|x\|_{p}\|y\|_{q}$ is known as the
(a) Minkowski's inequality
(b) Holder's inequality
(c) Triangle inequality
(d) Schwartz's inequality
2. The conjugate space of l_{∞}^{n} is
(a) l_{∞}^{n}
(b) l_{1}^{∞}
(c) l_{1}^{n}
(d) l_{∞}
3. Which one of the following is not reflexive?
(a) l_{3}
(b) C_{0}
(c) L_{4}
(d) l_{2}^{6}
4. If X is a compact Hausdorff space then $C(X)$ is reflexive if and only if
(a) X is an infinite set
(b) X is an uncountable set
(c) X is a finite set
(d) X is a singleton set
5. In a Hilbert space $\langle x, i y+4 z\rangle$ is
(a) $i\langle x, y\rangle+4\langle x, z\rangle$
(b) $-i\langle x, y\rangle-4\langle x, z\rangle$
(c) $-i\langle x, y\rangle+4\langle x, z\rangle$
(d) $\langle x, y\rangle+4\langle x, z\rangle$
6. In a Hilbert space H , which one of the following is not true (Here S is a nonempty subset of H)
(a) $\{0\}^{\perp}=H$
(b) $S \cap S^{\perp} \subseteq\{0\}$
(c) $S_{1} \subseteq S_{2} \Rightarrow S_{1}^{\perp} \subseteq S_{2}^{\perp}$
(d) S^{\perp} is a closed linear subspace of H

Page $2 \quad$ Code No. : 5852
7. The value of $\int_{0}^{2 \pi} e^{i 4 x} e^{-7 x} d x$ is
(a) -3
(b) 11
(c) 0
(d) 2π
8. An operator T on H is normal if and only if
(a) $\left\|T^{*} x\right\|=\|T x\|$ for every x
(b) $\quad\|T x\|=\|x\|$ for all x
(c) $(T x, T y)=(x, y)$ for all x and y
(d) $(T x, x)$ is real for all x
9. A closed linear subspace M of H reduces an operator T if and only if M is invariant under
(a) T
(b) T^{*}
(c) either T or T^{*}
(d) both T and T^{*}
10. An operators T on H is an isometric isomorphism of H onto itself if and only if
(a) T is unitary
(b) T is normal
(c) T is self adjoint
(d) T is a positive operator

Page $3 \quad$ Code No. : 5852

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Define a Banach space with an example. Prove that the addition and the scalar multiplication are jointly continuous in a Banach space.

Or
(b) If M is a closed linear subspace of a normed linear space N and x_{0} is a vector not in M, prove that there exists a functional f_{0} in N^{*} such that $f_{0}(M)=0$ and $f_{0}\left(x_{0}\right) \neq 0$.
12. (a) If B and B^{\prime} are Banach spaces, and if T is a linear transformation of B into B^{\prime}, prove that T is continuous if its graph is closed.

Or
(b) If B is a Banach space, prove that B is reflexive if and only if B^{*} is reflexive.
13. (a) Prove that a non-empty subset X of a normed linear space N is bounded $\Leftrightarrow f(X)$ is a bounded set of numbers for each f in N^{*}.

Or
(b) State and prove Schwarz inequality in a Hilbert space.

Page $4 \quad$ Code No. : 5852
[P.T.O.]
14. (a) Prove that a Hilbert space H is separable \Leftrightarrow every orthonormal set in H is countable.

Or
(b) Prove that an operator T on H is self-adjoint $\Leftrightarrow(T x, x)$ is real for all x.
15. (a) If T is an operator on H, prove that T is normal \Leftrightarrow its real and imaginary parts commute.

Or

(b) If P is the projection on a closed linear subspace M of H, prove that M is invariant under an operator $T \Leftrightarrow T P=P T P$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Let M be a closed linear subspace of a normed linear space N. If the norm of a coset $x+m$ in the quotient space N / M is defined by $\|x+M\|=\inf \{\|x+M\| / m \in M\}$, prove that N / M is a normed linear space. Also show that N / M is a Banach space if N is a Banach space.

Or

Page $5 \quad$ Code No. : 5852
(b) Let M be a linear subspace of a normed linear space N and let f be a functional defined on M. If x_{0} is a vector not in - M and it $M_{0}=M+\left[x_{0}\right]$ is the linear subspace spanned by M and x_{0}, prove that f can be extended to a functional f_{0} defined on M_{0} such that $\left\|f_{0}\right\|=\|f\|$.
17. (a) Prove that $x \rightarrow F_{x}$ is a norm preserving mapping of N into $N^{*} x$ where F_{x} is defined by $F_{x}(f)=f(x) \forall f \in N^{*}$. Also show that the mapping $x \rightarrow F_{x}$ is linear and an isomeric isomorphism of N into N^{*}.

Or
(b) If B and B^{\prime} are Banach spaces, and it T is a continuous linear transformation of B onto B^{\prime}, prove that the image of each open sphere centered on the origin in B contains an open sphere centered on the origin in B^{\prime}.
18. (a) State and prove the uniform boundedness theorem.

Or
(b) Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.
19. (a) Let H be a Hilbert space and let $\left\{e_{i}\right\}$ be an orthonormal set in H. Prove that the following are equivalent :
(i) $\left\{e_{i}\right\}$ is complete
(ii) $x \perp\left\{e_{i}\right\} \Rightarrow x=0$
(iii) If x is an arbitrary vector in H then $x=$ $\sum\left(x, e_{i}\right) e_{i}$
(iv) If x is an arbitrary vector in H, then $\|x\|^{2}=\Sigma\left|\left(x, e_{i}\right)\right|^{2}$.

Or
(b) Let H be a Hilbert space and let f be an arbitrary functional in H^{*}. Prove that there exists a unique vector y in H such that $f(x)=(x, y)$ for every x in H.
20. (a) If P is protection on H with range M and null space N, prove that $M \perp N \Leftrightarrow P$ is self-adjoint and in this case show that $N=M^{\perp}$.

Or
(b) Let T be an arbitrary operator on H. Let $\lambda_{1}, \lambda_{2}, \ldots \ldots \ldots, \lambda_{m}$ be the eigen values and let $M_{1}, M_{2}, \ldots \ldots, M_{m}$ be their corresponding eigen spaces. Prove that if T is normal then the M_{i} 's are pairwise orthogonal and span H.

Reg. No. :

\qquad

Code No. : 5853

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Fourth Semester
Mathematics - Core
COMPLEX ANALYSIS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - (10 $\times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. If $f(z)$ is a real function of a complex variable then
(a) the derivative does not exist
(b) the derivative exists
(c) either the derivative is zero or the derivative does not exist
(d) the derivative is zero
2. The formula $\frac{1}{R}=\lim _{n \rightarrow \infty} \sup \sqrt[n]{\left|\alpha_{n}\right|}$ is known as
(a) Hadamard's formula
(b) Cauchy's formula
(c) Abel's formula
(d) Rouche's formula
3. If $\int_{\gamma} f(z) d z=2+i$ then $\int_{-\gamma} f(z) d z$ is
(a) $2-i$
(b) $2+i$
(c) $-2-i$
(d) 0
4. If $w=S(z)=\frac{a z+b}{c z+d}$ then $S^{-1}(w)$ is
(a) $\frac{d w-b}{-c w+a}$
(b) $\frac{d w-b}{c w-a}$
(c) $\frac{d w-b}{-c w-a}$
(d) z^{-1}
5. $\quad \int_{|z|=1} \frac{e^{z}}{z} d z$ is
(a) 0
(b) 1
(c) 2π
(d) ∞

Page $2 \quad$ Code No. : 5853
6. The index of the point a w.r.t. the curve γ is
(a) $\frac{1}{2 \pi i} \int_{\gamma}(z-a) d z$
(b) $\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-a}$
(c) $\frac{1}{2 \pi i} \int_{\gamma} d z$
(d) $\int_{\gamma} \frac{d z}{z-a}$
7. "If $f(z)$ is a polynomial of degree >0 then $f(z)=0$ must have a root" - This result is known as
(a) Liouville's theorem
(b) Morera's theorem
(c) Fundamental theorem of algebra
(d) Cauchy's theorem
8. If $f(z)$ is analytic and non constraint is a region Ω then
(a) $f(z)$ has no maximum in Ω
(b) $f(z)$ has maximum in Ω
(c) $|f(z)|$ has maximum in Ω
(d) $|f(z)|$ has no maximum in Ω

Page $3 \quad$ Code No. : 5853
9. The residue of the function $\frac{e z}{(z-a)(z-b)}$ at the pole a is
(a) $\frac{e^{a}}{b-a}$
(b) $\frac{e^{a}}{a-b}$
(c) $\frac{e^{b}}{a-b}$
(d) $\frac{e^{b}}{b-a}$
10. Residue of $\frac{z+1}{z^{2}-2 z}$ at $z=0$ is
(a) $\frac{1}{2}$
(b) 0
(c) $3 / 2$
(d) $-1 / 2$

PART B $-(5 \times 5=25$ marks $)$

Answer ALL questions, choosing either (a) or (b).
11. (a) State and prove Lucas's theorem.

> Or
(b) Show that an analytic function cannot have a constant absolute value without reducing to a constant.

Page $4 \quad$ Code No. : 5853
[P.T.O.]
12. (a) Find the linear transformation which carries $0, i,-i$ into $1,-1,0$.

Or
(b) Show that the transformation $z \rightarrow \bar{z}$ is not a linear transformation.
13. (a) If the piecewise differentiable closed curve γ does not pass through the point a, prove that the value of the integral $\int_{\gamma} \frac{d z}{z-a}$ is a multiple of $2 \pi i$.

Or
(b) As a function of a, prove that the index $n(r, a)$ is constant in each of the regions determined by γ and zero in the unbounded region.
14. (a) State and prove Morera's theorem.

Or
(b) State and prove the fundamental theorem of algebra.
15. (a) State and prove Rouche's theorem.

Or
(b) State and prove the residue theorem.

Page $5 \quad$ Code No. : 5853

PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Derive the Cauchy-Riemann differential equations which must be satisfied by the real and imaginary part of any analytic function and hence show that $\left|f^{\prime}(z)\right|^{2}$ is the Jacobian of u and $v \quad$ w.r.t. x and y where $f(z)=u(z)+i v(z)$.

Or
(b) State and prove Abel's limit theorem.
17. (a) Obtain a necessary and sufficient condition under which a line integral depends only on the end points.

Or
(b) Compute $\int|z|=1$
18. (a) If the function $f(z)$ is analytic in a rectangle R, prove that $\int_{\partial R} f(z) d z=0$.

Or
(b) Let $f(z)$ be analytic on the set R^{\prime} obtained from a rectangle R by omitting a finite number of interior points ζ_{j}. If $\underset{z \rightarrow \zeta_{i}}{l\left(z-\zeta_{i}\right)} f(z)=0$ for all i, prove that $\int_{\partial R} f(z) d z=0$.

Page 6 Code No. : 5853
19. (a) Suppose that $\phi(\zeta)$ is continuous on the arc γ. Prove that $F n(z)=\int_{\gamma} \frac{\phi \zeta d \zeta}{(\zeta-z) n}$ is analytic in each of the regions determined by γ and derivatives is $F n^{\prime}(z)=n F n+1(z)$.

Or
(b) (i) State and prove the maximum principle.
(ii) State and prove the lemma of Schwarz.
20. (a) State and prove the argument principle.

Or
(b) Evaluate $\int_{0}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} d x$, a real.
\qquad
Code No. : 5854
Sub. Code : PMAM 43
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Fourth Semester

Mathematics - Core

ADVANCED ALGEBRA - II

(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks

PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer

1. If Q is the field of rational numbers, then $[Q(\sqrt{2}): Q]+[Q(\sqrt{3}): Q]$ is
(a) 2
(b) 6
(c) 4
(d) 5
2. If L is a finite extension of F and K is a subfield of L which contains F, then
(a) $[L: K] /[L: F]$
(b) $[K: F] /[L: F]$
(c) $[L: F] /[L: K]$
(d) $[L: F] /[K: F]$
3. 2 s a root of $(x-2)^{4}(x+3)^{5}\left(x^{2}-3 x+2\right)$ of multiplicity
(a) 4
(b) 3
(c) 5
(d) 11
4. The characteristic of the field of rotational numbers Q is
(a) A prime number P
(b) 0
(c) 1
(d) A composite number
5. If G is a group of automorphisons of K, then the fixed field of G is
(a) $\{a \in k / \sigma(a)=a \forall \sigma \in G\}$
(b) $\{a \in k / \sigma(a)=o \forall \sigma \in G\}$
(c) $\{a \in a / \sigma(a)=a \forall \sigma \in K\}$
(d) $\{a \in a / \sigma(a)=0 \forall \sigma \in K\}$

Page $2 \quad$ Code No. : 5854
6. If $K=\mathbb{C}$ and $\mathrm{F}=\mathbb{R}$, then the fixed field of $G(K, F)$ is
(a) K
(b) F
(c) a filed between K and F
(d) ϕ
7. Which one of the following is a filed?
(a) J_{6}
(b) J_{18}
(c) J_{28}
(d) J_{19}
8. The cyclotornic polynomial $\Phi_{4}(x)$ is
(a) $x^{2}+1$
(b) $x-1$
(c) $x+1$
(d) $x^{2}+x+1$
9. Let H be the Hurwitz ring of integral quaternions. If $a \in H$ then $a^{-1} \in H$ if and only if.
(a) $N(a)=0$
(b) $\quad N(a)=1$
(c) $\quad N(a)= \pm 1$
(d) $N(a) \neq 0$
10. Let C be the field of complex numbers and suppose that the divisions ring D is algebraic are C. Then
(a) $D \neq C$
(b) $D=C$
(c) $C \subset D$
(d) $D \subset C$

Page $3 \quad$ Code No. : 5854

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) If L is an algebraic of K and if K if K an algebraic extension of F, prove that L is an algebraic extension of F.

Or
(b) If a, $b \in K$ are algebraic over F of degree on and n, respectively, and if m and n are relatively prime, prove that $f(a, b)$ is of degree $m n$ over F.
12. (a) Prove that a polynomial of degree n over a field can have at most n roots in any extension field.

Or
(b) If $f(x)$ and $f^{\prime}(x)$ have a non trivial common factor, prove that $f(x) \in F[x]$ has a multiple root.
13. (a) Prove that $G(K, F)$ is a subgroup of the group of all automorphism of K.

Or
(b) If K is finite extension of F, prove that $O(G(K, F)) \leq[K: F]$.

Page $4 \quad$ Code No. : 5854
[P.T.O.]
14. (a) For any prime number P and any integer m, prove that there is a field having p^{m} elements.

Or
(b) Let G be a finite abelian group enjoying the property that the relation $x^{n}=e$ is satisfied by at most n elements of G, for every integer n, prove that G is a cyclic group.
15. (a) Suppose that the division ring D is algebraic over the field of complex number D, prove that $D=C$.

Or

(b) Let Q be the divisions ring of real quaternions for $x \in Q$, define $N(x)$ and prove that $N(x y)=N(x) N(y)$ for all $x, y \in Q$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b)
16. (a) With usual notations, prove that $[L: F]=[L: K][K: F]$.

Or
(b) Prove that the element of $a \in k$ is algebraic over F if and only if $F(a)$ is a finite extension of F.

Page $5 \quad$ Code No. : 5854
17. (a) If $P(x)$ is irreducible in $F[x]$ and if v is a root of $p(x)$, prove that $F(v)$ is isomorphic to $F^{\prime}(w)$ where w is a root of $p^{\prime}(t)$.

Or
(b) If F is of characteristic O and if a, b and algebraic over F, prove that there exist an element $C \in F(a, b)$ such that $F(a, b)=F(c)$.
18. (a) Prove that K is a normal extension of F if and only if K is the splitting field of some polynomial over F.

Or
(b) State and prove the fundamental theorem of Galois theory.
19. (a) If F is a finite field and $\alpha \neq o, \beta \neq 0$ and two elements, of F, prove that we can find elements a and b in F such that $1+\alpha a^{2}+\beta b^{2}=0$.

Or
(b) Prove that a finite divisions ring is necessarily a commutative field.
20. (a) State and prove Frobenius theorem.

Or
(b) Prove that every positive integer can be expressed as the sum of squares of four integers.
(8 pages)

Reg. No. :

Code No. : 5855
Sub. Code : PMAM 44
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Fourth Semester
Mathematics - Core
TOPOLOGY - II
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - (10 $\times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. A space for which every open covering contains a countable sub covering is called
(a) Separable
(b) Compact
(c) Lindelöf
(d) Second countable
2. Which one of the following is not true?
(a) T_{2} and compact \Rightarrow normal
(b) T 3 and Lindelöf $\Rightarrow T_{3 \frac{1}{2}}$
(c) T_{2} and compact $\Rightarrow \mathrm{T}_{3}$ and Lindelöf
(d) T_{2} and compact $\Leftarrow \mathrm{T}_{3}$ and Lindelöf
3. Every regular space with a countable basis is
(a) normal
(b) completely regular but not normal
(c) regular but not completely regular
(d) compact and Hausdorff
4. A space X is completely regular then it is homeomorphic to a subspace of
(a) $[0,1]^{J}$
(b) \mathbf{R}^{n} where n is a finite
(c) \mathbf{R}^{J}
(d) $(0,1)^{J}$ where n is a finite number and J is uncountable.

Page $2 \quad$ Code No. : 5855
5. Normal space is also known as
(a) T_{4}
(b) $\quad T_{2 \frac{1}{2}}$
(c) $\quad T_{3 \frac{1}{2}}$
(d) T_{3}
6. Tietze extension theorem implies
(a) The Urysohn Metrization theorem
(b) Heine-Borel theorem
(c) The Urysohn lemma
(d) The Tychonof theorem
7. Let $A=\{(n-1, n+1): n \in Z\}$. Which of the following refine A.
(a) $\left\{\left(n-\frac{1}{2}, n+\frac{3}{2}\right): n \in Z_{+}\right\}$
(b) $\left\{\left(n+\frac{1}{2}, n+\frac{3}{2}\right): n \in Z_{+}\right\}$
(c) $\left\{\left(n-\frac{1}{2}, n+2\right): n \in Z_{+}\right\}$
(d) $\{(x, x+1): x \in R\}$
8. Which one of the following is locally finite in R ?
(a) $\{(n-1, n+1): n \in Z\}$
(b) $\left\{\left(0, \frac{1}{n}\right): n \in Z_{+}\right\}$
(c) $\left\{\left(\frac{1}{n+1}, \frac{1}{n}\right): n \in Z_{+}\right\}$
(d) $\{(x, x+1): x \in R\}$
9. Which of the following is not true?
(a) Every non empty subset of the set of irrational numbers is of second category
(b) Open subspace of a Baire space is a Baire space
(c) The set of rationals is a Baire space
(d) If $X=\bigcup_{n=1}^{\infty} B_{n}$ and X is a Baire space with $B_{1} \neq \phi$, then atleast one of \bar{B}_{n} has nonempty interior.
10. Which one of the following is not true?
(a) Any set X with discrete topology is a Baire space
(b) Every locally compact space is a Baire space
(c) $[0,1]$ is a Baire space
(d) Rationals as a subspace of real numbers is not a Baire space

Page $4 \quad$ Code No. : 5855
[P.T.O.]

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Let X be a topological space. Let one point sets in X be closed. Then prove that X is regular if and only if given a point x of X and a neighborhood U of x, there is a neighborhood V of x such that $\bar{V} \subset U$.

Or
(b) Show that if X is regular, every pair of points of X have neighborhoods whose closures are disjoint.
12. (a) Examine the proof of Urysohn lemma and show that for a given r, $f^{-1}(r)=\left(\bigcap_{p>r} U_{p}-\bigcup_{q<r} U_{q}\right)$, where p and q are rational.

Or
(b) Prove that every normal space is completely regular and completely regular space is regular.

Page $5 \quad$ Code No. : 5855
13. (a) Prove that Tietze extension theorem implies the Urysohn lemma.

Or
(b) State and prove imbedding theorem.
14. (a) Give an example of a collection of sets A that is not locally finite, such that the collection $B=\{\bar{A}: A \in A\}$ is locally finite.

Or
(b) Define finite intersection property. Let X be a set and D be the set of all subsets of X that is maximal with respect to finite intersection property. Show that
(i) $x \in \bar{A} \forall A \in D \quad$ if and only if every neighborhood of x belongs to D.
(ii) Let $A \in D$. Then prove that $B \supset A \Rightarrow B \in D$.
15. (a) Define a first category space. Prove that X is a Baire space if and only if given any countable collection $\left\{U_{n}\right\}$ of open sets in X, U_{n} is dense in $X \forall n$, then $\cap U_{n}$ is also dense'.

Or

(b) Define a Baire space. Whether Q the set of rationals as a space is Baire space? What about if we consider Q as a subspace of real numbers space. Justify your answer.

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) Prove that the space \mathbf{R}_{L} satisfies all the countability axioms but the second.

Or
(b) Prove that product of Lindelof spaces need not be Lindelof.
17. (a) Define a regular space and a normal space. Prove that every regular second countable space is normal.

Or

(b) State and prove Urysohn's lemma.
18. (a) State and prove Tietze extension theorem.

Or

(b) State and prove Uryzohn's metrization theorem.

Page $7 \quad$ Code No. : 5855
19. (a) State and prove Tychonoff theorem.

Or

(b) Let X be a metrizable space. If A is an open covering of X, then prove that there is an open covering ξ of X refining A that is countably locally finite.
20. (a) Let X be a space ; let (Y, d) be a metric space. Let $f_{n}: X \rightarrow Y$ be a sequence of continuous functions such that $f_{n}(x) \rightarrow f(x)$ for all $x \in X$, where $f: X \rightarrow Y$. If X is a Baire space, prove that the set of points at which f is continuous is dense in X.

Or
(b) State and prove Baire Category Theorem.
\qquad

Code No. : 5088

Sub. Code : HMAM 41
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Fourth Semester
Mathematics
FUNCTIONAL ANALYSIS
(For those who joined in July 2012-2015)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. Every linear transformation of N into an arbitrary normal linear space N^{\prime} is \qquad
(a) Bounded
(b) Unbounded
(c) Continuous
(d) Discontinuous
2. If $S=\{x:\|x\| \leq 1\}$ is the closed unit sphere in N, then its image $T(S)$ is a \longrightarrow set in N^{1}.
(a) Bounded
(b) Unbounded
(c) Continuous
(d) Discontinuous
3. If x and y are any two vectors in a Hilbert space, then $|(x, y)|-\|x\| y \|$
(a) \leq
(b) <
(c) \geq
(d) $>$
4. If M and N are closed linear spaces of a Hilbert space H such that $M \perp N$, then the linear subspace $M+N$ is \qquad
(a) open
(b) closed
(c) union
(d) disjoint
5. Which one is the property of orthonormal?
(a) $i=j \Rightarrow e_{i} \perp e_{j}$
(b) $\left\|e_{i}\right\|=0$ for every i
(c) $\left\|e_{i}\right\|=1$ for every i
(d) $i=j \Rightarrow e_{i} \| e_{j}$
6. Every non-zero Hilbert space contains a complete \longrightarrow set.
(a) parallel
(b) normal
(c) orthonormal
(d) closed
7. If N is a normal operator on H, then $\left\|N^{2}\right\|=$
\qquad
(a) 1
(b) 0
(c) N
(d) $\|N\|^{2}$
8. The unitary operators on H form a
(a) subgroup
(b) cyclic subgroup
(c) group
(d) abelian group
9. If A is a division algebra, then it equals the set of all scalar multiples of the
(a) identity
(b) constant
(c) reciprocal
(d) inverse
10. If G is an open set, then S is a set.
(a) open
(b) closed
(c) normal
(d) orthonormal

Page $3 \quad$ Code No. : 5088

PART B- ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 words.
11. (a) Prove that if N is a normal linear space and x_{0} is a non-zero vector in N , then there exist a functional f_{0} in N * such that $f_{0}\left(x_{0}\right)=\left\|x_{0}\right\|$ and $\left\|f_{0}\right\|=1$.

Or
(b) If N and N^{\prime} be the normal linear spaces and T a linear transformation of N into N^{\prime}. Then prove that the following conditions on T are all equivalent : (i) T is continuous (ii) T is continuous at the origin, in the sense that $x_{n} \rightarrow 0 \Rightarrow T\left(x_{n}\right) \rightarrow 0$.
12. (a) State and prove open mapping theorem.

Or
(b) Prove that if M is a closed linear space of a Hilbert space H, then $H=M \oplus M^{\perp}$.
13. (a) Prove that an operator T on H is self adjoint $\Leftrightarrow\left(T_{x}, x\right)$ is real for all x.

Or

Page $4 \quad$ Code No. : 5088
[P.T.O.]
(b) Prove that if $\left\{e_{i}\right\}$ is an orthonormal set in a Hilbert space H, and if x is any vector in H, then the set $S=\left\{e_{i}:\left(x_{i} e_{i}\right) \neq 0\right\}$ is either empty or countable.
14. (a) Prove that if P is the projection on a closed linear subspace M of H, then M is invariant under operator $T \Leftrightarrow T P=P T P$.

Or
(b) Prove that if T is normal, then the M_{i} 's are pairwise orthogonal.
15. (a) Prove that G is an open sat, and therefore S is a closed set.

Or

(b) Prove that $\sigma\left(x^{n}\right)=\sigma(x)^{n}$.

PART C - (5 $\times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b)
Each answer should not exceed 600 words.
16. (a) Prove that let M be a closed linear subspace of a normal linear space N. If the norm of coset $x+M$ in the quotient space N / M is defined by $\quad\|x+M\|=\inf f\{\|x+M\|: m \in M\}$. Then N / M is a normal linear space

Or

Page $5 \quad$ Code No. : 5088
(b) Show that let M be a linear subspace of a normed linear space N, and let f be a functional defined on M. If x_{0} is a vector not in M, and if $M_{0}=M+\left[x_{0}\right]$ is the linear subspace spanned by M and x_{0} such that $\left\|f_{0}\right\|=\|f\|$.
17. (a) State and prove closed graph theorem.

Or
(b) Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.
18. (a) State and prove Bessel's Inequality.

Or

(b) Prove that let H be a Hilbert space, and let f be an arbitrary functional in H^{*}. Then there exists a unique vector y in H such that $f(x)=(x, y)$ for every x in H.
19. (a) Prove that if P is a projection on H with range M and null space N, then $M \perp N \Leftrightarrow P$ is self adjoint; and in this case $N=M^{\perp}$.

Or
(b) Prove that if T is normal, then the M_{i} 's span H.

Page $6 \quad$ Code No. : 5088
20. (a) Prove that if r is an element of A with the property that $1-x r$ is regular for every x, then r is in R.

Or
(b) Prove that $r(x)=\lim \left\|x^{n}\right\|^{1 / n}$.

Page $7 \quad$ Code No. : 5088

